
Towards a More Efficient Synchronization in KVM

KVM FORUM 2021
Wanpeng Li

wanpengli@tencent.com

Agenda
Boost Preempted vCPU in user-mode
vCPU stack by wake-affine
RCU-Reader Preemption Problem

Boost Preempted vCPU in user-mode
Synchronization based on “Busy-waiting”

Unnecessary CPU consumption by busy-waiting for a descheduled vCPU
Significant performance degradation

Semantic gap
OSes assume their vCPUs are dedicated as pCPUs

Boost Preempted vCPU in user-mode

Most smp_call_function_many calls are synchronous, mainly TLB Flush
and "Function Call interrupts"
Both the lock holder and IPI target vCPU are yield candidates

Boost Preempted vCPU in user-mode
Intel PLE occurs when the spinlock waiter is in kernel-mode

 IPI receiver can be in either kernel or user mode.
 IPI receiver candidate in user-mode fails to be boosted

Workloads like pbzip2 do the TLB shootdown in kernel-mode and most
of the time they are running in user-mode.

It can lead to a large number of continuous PLE events
 IPI sender causes PLE events repeatedly until the receiver is scheduled while the receiver
is not candidate for a boost.

Boost Preempted vCPU in user-mode
Let's boost the vCPU candidate in user-mode which is delivering interrupt
Evaluation Environment

Hardware: Intel CLX, 2 socket, 48 cores, 96 HTs
VM: 96 vCPUs
Test case: pbzip2

0

10

20

30

40

50

60

70

80

Wall Clock: seconds

vanilla boost

10%

vCPU stack by wake-affine
Wake-affine is a feature inside scheduler
which we attempt to make processes
running closely, it gains benefit mostly
from cache-hit.
When qemu/other vCPU inject virtual
interrupts to guest through waking up
one sleeping vCPU, it increases the
probability to stack vCPUs/qemu by
scheduler wake-affine.

try to wakeup wakee

select cpu to run wakee

check

wake_affine()

close to X close to Y

TRUE FALSE

When:
1. waker is currently running on CPU X
2. wakee was last time running on CPU Y

vCPU stack by wake-affine
A scheduler allows vCPUs to be scheduled on any pCPUs. This will
cause the vCPU stacking problem that the lock waiter is scheduled
before the lock holder on the same pCPU.

vCPU stack by wake-affine
How often does scheduler stack vCPUs?

Run 4-vCPU VMs on 4-CPU physical machine

Run the CPU-bound workload inside the VMs
100% utilization on each vCPU

#VMs ≥ 2 vCPU siblings stacking on the same CPU
1 5.564%

2 43.127%

3 45.932%

vCPU stack by wake-affine
Let's disable wake-affine vCPU process to mitigate lock holder
preemption
Evaluation Environment

 Hardware: Intel SKX, 2 sockets, 40 cores, 80 threads
 VM: 80 vCPUs
Test case: ebizzy -M

0

3000

6000

9000

12000

15000

18000

21000

24000

3VM

RECORD/S
17%

 RCU-Reader Preemption
RCU GPs cannot complete while a vCPU is preempted within an RCU
read-side critical section. Guest OS invoking synchronize_rcu() can
incur latency spikes from several seconds on overcommitted hosts.

 RCU-Reader Preemption
Although calls to call_rcu() continue to return immediately, their
callbacks cannot be invoked.
Linux-Kernel code can therefore continuously invoke call_rcu(), GP
delay due to vCPU preemption can cause transient memory-footprint
spikes, frequent transient memory-footprint spikes can scatter the
kernel pages through the system, which can increase external memory
fragmentation.

 RCU-Reader Preemption
Evaluation: Postmark

Reference
https://lore.kernel.org/kvm/1618542490-14756-1-git-send-email-

wanpengli@tencent.com/
https://lore.kernel.org/kvm/1564479235-25074-1-git-send-email-

wanpengli@tencent.com/

 Q/A？

