The traps of using Hyper V features in KVM environment

Liang Li Aug 2021
Performance issues when using Hyper V features

Cause Analysis & Solutions

Conclusion
Background

- Application scenarios of Window guest
 - Cloud Desktop
 - Cloud Game

- Hyper V
 - Windows guest support is good

- KVM
 - Try to support Windows guest better by simulating Hyper V functions

- Hyper V related features
 - hv-relaxed, hv-time, hv-stimer, hv-stimer-direct, hv-vapic, hv-synic, hv-tlbflush, hv-mpi, hv-spinlocks …
 - Common usage: turn on all features
Workload characteristics of cloud gaming

• 3D rendering
 • High CPU & GPU usage
 • IPI intensive
 • 35000+ IPIs per second
 • 1200+ extra IPIs per second for when Microsoft Remote Desktop for Mac is used
 • IPI send to some of the VCPUs
 • Which can be accelerate by hv-mpi

• Performance drops significantly when running on a VM
 • Compared with running on a bare metal server
 • With Hyper V features enabled
 • Average FPS drops by 1
 • The proportion of [>55] FPS decreased by 10%
Performance comparison with different config

None of Hyper V feature is set

All Hyper V features are set

Hyper V features can help to reduce the virtualization overhead a lot
Performance comparison with different config

Disable hypervisor CPUID

[Diagram showing VM Exit count and Virtualization cost (us) for different configurations]

- All hv features off
- All hv features on
- Disable hypervisor CPUID

Disable hypervisor CPUID has the lowest virtualization overhead
How Windows guest choose system timer

- **Expose hypervisor CPUID**
 - Priority: Stimer > HPET > RTC
 - Stimer is used when all the Hyper V features are turned on
 - HPET or RTC is used when the hyper v features are turned off

- **Hide hypervisor CPUID**
 - Priority: LAPIC timer > HPET > RTC
 - LAPIC timer is the default system timer
 - Hyper V related features are invalid
Virtualization efficiency of different system timers

- **RTC & HPET**
 - RTC trapped by PIO access
 - HPET trapped by MMIO access
 - Emulated in user space

- **Stimer**
 - Trapped by MSR access
 - Emulated in Kernel

- **LAPIC timer**
 - Trapped by APIC access
 - Emulated in Kernel

- **Virtualization overhead**
 - LAPIC timer == Stimer < HPET < RTC
Cause Analysis

• Why virtualization overhead is lower when Hyper V features are enabled
 • Stimer has lower virtualization overhead than HPET & RTC
• Why virtualization overhead is the lowest after hiding hypervisor CPUID
 • Stimer has side effects
Cause Analysis

• Some facts about Stimer
 • hv-stimer depends on hv-synic
 • The Auto EOI feature of hv-synic conflicts with APICv
 • APICv can reduce interrupt injection overhead
 • The hardware APICv feature is invalid when Stimer is on
• IPI virtualization for Intel CPU
 • Trapped by ICR access
 • Inject interrupts into the VCPU will cause vm exit if APICv is off
• Stimer will increase the IPI virtualization overhead
 • LAPIC timer does not have this problem
 • Turn off Stimer will increase overall virtualization overhead
Solutions

• Hide hypervisor CPUID for scenarios with intensive IPIs
 • Disable all Hyper V features at the same time
 • Can't enjoy the benefits of hv-tlbflush, hv-mpi, hv-spinlocks and hv-xxx

• Adjust the logic of Windows' selection of system timers
 • Decoupling hypervisor CPUID and LAPIC timer
 • Give priority to using LAPIC timer when Hypervisor CPUID is exposed
Solutions

• Resolve the conflict between hv-stimer and APICv
 • Disable the Auto EOI feature of hy-synic
 • Solved by expose HV_DEPRECATING_AEOI_RECOMMENDED
 • Recommend guests use hardware APICv MSR
 • Can be solved by clear HV_X64_APIC_ACCESS_RECOMMENDED
• Optimize the cost of EOI induced vm-exit
 • Avoid EOI induced vm-exit for Stimer
Effect of optimization

Set all HV features (with hv-stimer optimization)

• After optimization, turn on all Hyper V features perform best
Conclusion

• Hyper V features in KVM have room for improvement
 • Any feature should not cause performance degradation
 • Avoid the need for users to decide which feature to use according to workload
• Pay attention to the pitfalls when using the Hyper V features
 • Turning on all Hyper V features is not necessarily the best way
 • Pay attention to business scenarios with intensive IPIs
 • Before related problems are solved, performance tests are required