Receive side scaling (RSS) with eBPF in QEMU and virtio-net

Yan Vugenfirer - CEO, Daynix
Agenda

- What is RSS?
- History: RSS and virtio-net
- What is eBPF?
- Using eBPF for packet steering (RSS) in virtio-net
What is RSS?

- Receive side scaling - distribution of packets’ processing among CPUs
 - A NIC uses a hashing function to compute a hash value over a defined area
 - Hash value is used to index an indirection table
 - The values in the indirection table are used to assign the received data to a CPU
 - With MSI support, a NIC can also interrupt the associated CPU
What is RSS?

RX handling
- CPU0

RX handling
- CPU1

RX handling
- CPU2

RX handling
- CPU3

NIC Driver

HW queue

HW queue

HW queue

HW queue

NIC

Packet classification
What is RSS?

Redirection table (up to 128 entries)

Packet header

Hash function (Toeplitz)

Queue\CPU number
History: RSS and virtio-net

• Let’s use RSS with virtio-net!
 • Utilisation CPUs for packet processing
 • Cash locality for network applications
 • Microsoft WHQL requirement for high speed devices
History: RSS and virtio-net

- No multi-queue in virtio
 - SW implementation in Windows guest driver (similar to RFS in Linux)
History: RSS and virtio-net

- virtio-net became multi queue device
 - Due to Windows requirements - hybrid model. Interrupt received on specific CPU core, but could be rescheduled to another
 - Works good for TCP
 - Might not work for UDP
 - Support legacy interrupts for old OSes
History: RSS and virtio-net

RX handling

CPU0
Packet classification

NetKVM

RX handling

CPU1
Packet classification

RX virt-queue

virtio-net

RX virt-queue
History: RSS and virtio-net

- virtio spec changes
 - Set steering mode
 - Pass the device redirection tables
 - Set hash value in virtio-net-hdr
 - No inter-processor interrupts due to re-scheduling
 - Vision: HW will do all the heavy work
- Implementations
 - SW only POC in QEMU
 - eBPF
virtio spec changes - capabilities

• VIRTIO_NET_F_RSS
• VIRTIO_NET_F_MQ must be set
virtio spec changes - device configuration

- **virtio_net_config**

```c
struct virtio_net_config {
    u8 mac[6];
    le16 status;
    le16 max_virtqueue_pairs;
    le16 mtu;
    le32 speed;
    u8 duplex;
    u8 rss_max_key_size;
    le16 rss_max_indirection_table_length;
    le32 supported_hash_types;
};
```
virtio spec changes - setting RSS parameters

- VIRTIO_NET_CTRL_MQ_RSS_CONFIG

```c
struct virtio_net_rss_config {
    le32 hash_types;
    le16 indirection_table_mask;
    le16 unclassified_queue;
    le16 indirection_table[indirection_table_length];
    le16 max_tx_vq;
    u8 hash_key_length;
    u8 hash_key_data[hash_key_length];
};
```
struct virtio_net_hdr {
 u8 flags;
 u8 gso_type;
 le16 hdr_len;
 le16 gso_size;
 le16 csum_start;
 le16 csum_offset;
 le16 num_buffers;
 le32 hash_value; (Only if VIRTIO_NET_F_HASH_REPORT negotiated)
 le16 hash_report; (Only if VIRTIO_NET_F_HASH_REPORT negotiated)
 le16 padding_reserved; (Only if VIRTIO_NET_F_HASH_REPORT negotiated)
};
What is eBPF?

• Enable running sandboxed code in Linux kernel
• The code can be loaded at run time
• Used for security, tracing, networking, observability
How can eBPF help us?

• Calculate the RSS hash and return the queue index for incoming packets
• Populate the hash value in virtio_net_hdr (work in progress)
The “magic”

• Loading eBPF program using IOCTL TUNSETSTEERINGEBPF
• `tun_struct` has `steering_prog` field
• If eBPF program for steering is loaded, `tun_select_queue` will call it with `bpf_prog_run_clear_cb`
Hash population (work in progress)

- Population from eBPF program
- `virtio_net_hdr` with additional fields
- Work in progress in kernel
 - Enlarge `virtio_net_hdr` in all kernel modules
 - Keep calculated hash in SKB and copy it to `virtio_net_hdr`
eBPF program source in QEMU

- `tun_rss_steering_prog`
 - `tools/ebpf/rss.bpf.c`
- Use clang to compile
 - `tools/ebpf/Makefile.ebpf`
eBPF program skeleton

• During QEMU compilation include file is populated with the compiled binary
 • bpftool gen skeleton rss.bpf.o > rss.bpf.skeleton.h
• Helpers to initialise maps (mechanism to share data between eBPF program and kernel\userspace)
 • Some changes to support libvirt - mmapping the shared data structure to user space (3 maps in current main branch without mmapping, 1 map in pending patches)
The configuration map is a BPF array map that contains everything required for RSS:

- Supported hash flows: IPv4, TCPv4, UDPv4, IPv6, IPv6ex, TCPv6, UDPv6
- Indirections table size (max 128)
- Default queue
- Toeplitz hash key - 40 bytes
- Indirections table - 128 entries
Loading eBPF program

- Two mechanisms
 - QEMU using function in skeleton file. Calling bpf syscall
 - eBPF helper program (with libvirt) - QEMU gets file descriptors from libvirt with already loaded ebpf program and mapping of the ebpf map (patches under review)
Loading eBPF program

- Possible load failures
 - Kernel support. Current solution requires 5.8+
 - Without helper
 - QEMU process capabilities: CAP_BPF, CAP_NET_ADMIN
 - sysctl kernel.unprivileged_bpf_disabled=1
 - libbpf not present
 - In case of helper usage - mismatch between helper and QEMU
 - Stamp is a hash of skeleton include file
• Built it QEMU RSS steering
 • Can be triggered also by live migration
 • Hash population is enabled in QEMU command line, because there is still not hash population from eBPF program
Live migration

• Known issue: migrating to old kernel
• eBPF load failure
• Fallback to in-QEMU RSS steering
QEMU command line

- Multi-queue should be enabled
- -smp with vCPU for each queue-pair
- -device virtio-net-pci,
 rss=on,hash=on,ebpf_rss_fds=<fd0,fd1>
QEMU command line

- rss=on
 - Try to load eBPF from skeleton or by using provided file descriptors
 - Fallback to “built-in” RSS steering in QEMU if cannot load eBPF program
- hash=on
 - Populate hash in virtio_net_hdr
- ebpf_rss_fds - optional, provide file descriptors for eBPF program and map
libvirt integration

- QEMU should run with least possible privileges
- eBPF helper
 - Stamping the helper during compilation time
- Redirection table mapping
- Additional command line options to provide file descriptors to QEMU
- Patches under review
Current status

- Initial support was merged to QEMU
- libvirt integration patches in QEMU and libvirt are under discussion on mailing lists
- Hash population by eBPF program - pending additional work for next set of patches
Pending patches

• QEMU libvirt integration: https://lists.nongnu.org/archive/html/qemu-devel/2021-07/msg03535.html
• libvirt patches: https://listman.redhat.com/archives/libvir-list/2021-July/msg00836.html
• RSS support in Linux virtio-net driver: https://lists.linuxfoundation.org/pipermail/virtualization/2021-August/055940.html
• In kernel hash calculation reporting to guest driver: https://lkml.org/lkml/2021/1/12/1329
virtio-net and eBPF future

- Packet filtering with vhost
- Security?
Links

- https://ebpf.io