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Motivation & Background

Share guest scan-out buffer between pass-through GPU & integrated GPU

• Multi-GPU platform

– More than one GPU is provided

– Power & performance benefits

• A  multi-GPU use case in client 

virtualization field

– Pass-through GPU:

• Best GPU performance within VM

– Integrated GPU for host display and render

• Power-saving

– Need scan-out buffer sharing mechanism 

between iGPU and pass-through GPU

• cross-domain dma-buf sharing



Cross-Domain DMA-BUF Sharing

• Sharing dma-buf owned by a pass-through 
device might not be feasible

– Hypervisor has no visibility of dma-buf
resource of a pass-through device

– The backing storage of a pass-through 
device’s dma-buf may be its private local 
memory which may not be accessible to other 
devices

• Proposal: para-virtualization based dma-buf
exporter



PV Based DMA-BUF Exporter

• VIRTIO-based cross-domain dma-buf

sharing mechanism

– Front-end: page-backed dma-buf owner and 

exposer in guest

– Back-end: dma-buf owner and exposer on host

– Equipped with a buffer producer-consumer 

synchronization mechanism

• Vdma-buf was proposed
– RFC patch-set: https://lwn.net/Articles/846810/

• Choose virtio-gpu at last
– Has cross-domain dma-buf sharing support

– Supported by Linux user space graphic stack

https://lwn.net/Articles/846810/


Architecture Picture

From guest p.o.v:
• Multi-GPU case, if 

virtio-gpu 2d/3d 
is enabled;

• Virtio-gpu display 
+ pass-through 
GPU render-only, 
if virtio-gpu 2d is 
enabled.



Virtio-gpu: Performance challenges

• More headless GPUs coming up: Intel XeHP SDV, SRIOV VFs,

etc.

• Noticed that there was one CPU copy and multiple GPU copies

done for transferring the Guest framebuffer data to the Host.

• Solution to eliminate the CPU copy was already available: Blob

resources.

• Virtio-gpu and Qemu UI maintainer (Gerd Hoffmann) created initial

patches to implement this feature more than a year ago.

• Refactored and augmented these initial patches and added few

more and finally got them merged.



Virtio-gpu: Blob resources

• It is based on Linux dma-buf buffer sharing framework.

• Before this feature, the resource data was (mem) copied from the

IOV to a shadow buffer (pixman) and then a texture was created.

• We now associate a dma-buf fd with the resource (FB) by passing

the IOV entries to the Udmabuf driver and getting an fd in return.

• A texture can be created directly using the fd thereby eliminating

the need for a CPU copy.

• The Udmabuf driver was also augmented to work if Qemu’s

memory backend was backed up by memfd + Hugepages.



Virtio-gpu: Blob resources



Virtio-gpu: Blob resource synchronization

• Synchronization (i.e., prevent Host and Guest from accessing a

buffer at the same time) was never a problem before this feature.

• And guests would render frames at a rate faster than what the

Host can consume -- wasting GPU cycles.

• Fix both these issues by introducing sync objects.

• A file descriptor (fd) is extracted from a sync object and can be

added to Qemu’s main event loop.

• The Guest would be blocked -- from rendering new frames -- until

the relevant fd is signaled.



Virtio-gpu: Blob resource synchronization

• Sync objects and fds are created using EGL APIs:

EGLSyncKHR sync = eglCreateSyncKHR();

int fd = eglDupNativeFenceFDANDROID(…, sync);

• Qemu UI backends such as GTK (default) and SDL that use EGL

for presenting Guest frames can make use of these sync objects.

• Once an fd associated with a sync object is signaled, it means the

Host is done using the buffer and it can be reused by the Guest.

• This also ensures that the Guest rendering rate is not higher than

the monitor refresh rate.

• Most of the patches associated with synchronization are already

reviewed and ready to be merged.



Qemu UI: New Wayland UI backend

• Qemu currently supports multiple UI backends: GTK, SDL,

Cocoa, Spice, etc.

• All these backends make a copy of the Guest framebuffer --

using either the CPU or the GPU -- before presenting it.

• This can lead to performance issues if multiple Qemu

instances are running and presenting Guest frames

simultaneously.

• Using Blob resources would eliminate the need for a CPU

copy but a GPU copy (aka Blit) cannot be eliminated if EGL is

used.

• Only way to eliminate the Blit is to submit the Guest

framebuffer directly to the Host display server/compositor.

• A Wayland UI backend makes this possible.



Qemu UI: New Wayland UI backend

• With this backend, it is possible to have the Guest framebuffer be

placed directly on a hardware plane (zero copy).

• If a hardware plane is not available, then the Host compositor

would inevitably Blit the Guest framebuffer onto its scanout buffer.

• In addition to limiting the (GPU) copies to a maximum of one, this

backend is very lightweight and has a smaller footprint.

• Drawbacks include no window decorations (menus, etc.) and its

efficacy is limited to iGPUs and Guests that do double-buffer

rendering.

• Patches are posted but a non-trivial overhaul (dbus) of Qemu UI

modules is underway after which this can be reviewed.



Summary

• Dma-buf exported by passthrough device may not be accessible

to other devices controlled in other domains.

• Para-virtualization based solution provides an efficient and generic

way for sharing cross-domain dma-buf.

• Using Blob resources would eliminate the need for CPU copies.

• Wayland UI backend would limit the GPU copies to a max of one.
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