Secure Live Migration of Encrypted VMs

Tobin Feldman-Fitzthum
Dov Murik
IBM Research
Migration

- Move VM from one node to another without stopping
- Hypervisor facilitates
 - Converging memory
 - Coordinating CPU state
 - Controlling execution
Confidential Computing

- Protection of data in use
- AMD SEV
 - The VM is the enclave
 - SEV, SEV-ES, SEV-SNP
- Hypervisor untrusted
SEV Live Migration

• SEV - encrypt guest memory with a key managed by the hardware
 – How does the hypervisor copy pages from source to target
 • Can’t copy the ciphertext
 – won’t decrypt if moved
 – and the keys aren’t on the target

• SEV-ES - protect guest CPU state
 – How does the HV coordinate the CPU state between source and target?*

• SEV-SNP - integrity guarantees for memory
 – How does the HV guarantee integrity during migration
 • What if a page becomes dirty after it has been copied?
Memory Encryption

• AMD-SP does have migration support
 – Wrap pages with transport key
 – KVM Forum in 2017 and 2019
 – Insufficient throughput to copy all guest memory

• We need support from the guest
 – Migration Handler inside guest context, but not part of the workload
 – Where should it live?
 – API: export page, import page
 – Pages encrypted with shared transport key
Firmware Migration Support

- MH in firmware can be measured and at boot
 - No opaque blobs
- Minimal OS dependency
 - Migrate early in boot or with hung guest
- Auxiliary vCPU
 - Add an extra vCPU, but hide it from the OS
 - OVMF starts normally and spins up the MH on the extra vCPU
- Mirror VM
 - Create a secondary VM that shares memory and encryption context (ASID)
 - Warm boot secondary VM directly to MH
• Primary VM and mirror share memory (ASID)
• Are the same to AMD-SP
• HV starts mirror vCPU from special entry point
Migration Handler

- OVMF has migration entry point
 - EIP discoverable by parsing firmware
- MH Entry trampolines to Migration Handler
- MH looks like normal DXE runtime driver
- Special mapping
 - Identity map with c-bit + shared pages at offset
- Firmware support in main VM
 - Setup the entry point
Is it safe?

- Hypervisor triggering execution inside the enclave
 - MH is measured
 - API is small

- QEMU depending on guest execution
 - QEMU can’t verify execution of MH
 - API is small

- Guest Owner verifies launch measurement of source and target
 - Transport key provided only if measurements check out

- Mirror boot process works with SEV-ES
SEV-ES Live Migration

- AMD-SP saves CPU state to encrypted memory at each VMExit
 - a handler puts CPU state needed for CPU Exit in a special buffer

- Initial CPU state is part of the launch measurement
- HV can set the initial CPU state, but the target VM will already be running

- How can we set the CPU state of a running guest?
 - Trampoline
Trampoline

- Map VMSA into the guest
 - Force an exit after memory converges
 - VMSA migrated as guest memory
 - Target MH has source CPU state in memory
- Can’t atomically resume CPU state
 - Set each register individually via trampoline
 - Delicate but possible
 - Need an intermediate page mapped in source PGT and MH PGT
 - Need trampoline for each vCPU
Trampoline

- Suspend / Resume?
 - Is this a live migration?

- SEV-SNP RMPADJUST

- No integrity protection for pages with VMSA
SEV-SNP Live Migration

- SEV(-ES) does not protect against replay attacks
- SEV-SNP guarantees that any value read from memory will be the last value written
- Changes migration trust model
- How can we make sure that a person in the middle can’t drop or replay some of the pages?
- How can we make sure that the HV sends all the necessary pages?

- Migration Agent & Initial Migration Image
Open Questions

- Post-copy
- Parallelism for Migration Handler
- Generalized confidential migration