
Copyright © SUSE 2021

KubeVirt and the Cost of
Containerizing VMs

KVM FORUM 2021

Guoqing Li, Nara Institute of
Science and Technology, Japan

Dario Faggioli, SUSE, Italy

Vasiliy Ulyanov, SUSE, Germany

Clicktoaddspeakernotes
HTML view of the presentation
Turn on screen reader support

Mouse
Pen

Rectangle
Stickers
Eraser

STOP WEBCAM

1

1

https://docs.google.com/presentation/u/0/d/1-ZCOElxOQHJp65kYl5WQkZSo-59yOKhh7OdwdNr1wxk/htmlpresent
https://docs.google.com/presentation/d/1-ZCOElxOQHJp65kYl5WQkZSo-59yOKhh7OdwdNr1wxk/edit#

Copyright © SUSE 2021

Guoqing Li

Master’s Student

Researching on container
and lightweight VM
technologies. Worked on
SaltStack, Docker & K8s.
guoqing_li@pm.me
linkedin.com/in/gql

Dario Faggioli

Virtualization Software
Engineer, SUSE

Worked on Linux
scheduling, then Xen,
now Xen & KVM

dfaggioli@suse.com
@DarioFaggioli

Vasiliy Ulyanov

Software Engineer, SUSE

Working on containers
and VMs convergence
technologies, K8s &
KubeVirt

vulyanov@suse.de
linkedin.com/in/vulyanov

Self Introductions
Who we are, what we do...

2

mailto:guoqing_li@pm.me
https://www.linkedin.com/in/gql/
mailto:dfaggioli@suse.com
https://twitter.com/DarioFaggioli
mailto:email@email.com
https://www.linkedin.com/in/vulyanov/

Copyright © SUSE 2021

We will see:

— What could be the effect of vCPU pinning
and virtual topology on a VM’s performance

— What tuning facilities are available on KVM and
on KubeVirt

— How tuning your VM for the best can lead you to … ...
… … a quite significant performance loss !!!

VM Performance Evaluation and Tuning with KVM and KubeVirt
Today’s Topic

NAS ua
(lower == better)

Ti
m

e

More
Tuning
Applied

3

Copyright © SUSE 2021

KVM & KubeVirt

Traditional Virtualization

Referred to as KVM, in the rest of the talk

Open source virtualization solution built into
Linux kernel which runs on x86 machines.

K8s Style Virtualization, with KubeVirt

Referred to as KubeVirt, in the rest of the talk

Kubernetes add-on that allows running and
managing virtual machines on clusters
alongside with containerized workloads.

What they are

4

Copyright © SUSE 2021

KVM & KubeVirt

Traditional Virtualization referred as KVM

Advantages:

— Full control of tuning capability
— Full control of the hosts where the VM

runs

Disadvantages:

— Tuning can be complex
— Managing hosts (e.g., allocating VMs on

them, etc) might be complex

K8s Style Virtualization, with KubeVirt

Advantages:

— Equipped K8s capability to orchestrate VMs
— Unified management of VMs and containers
— Allows “running VMs on scale”
— Some VM configuration complexities are

hidden behind a high-level yaml definition

Disadvantages:

— Does not allow to manually tweak all the
available VM parameters

— May introduce additional overhead or
limitations due to containerization

Pros and Cons

5

Copyright © SUSE 2021

Both for the KVM host and for the KubeVirt worker node:

Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz

— CPU(s): 32
– NUMA nodes (== sockets): 2
– Threads per core: 2
– Cores per socket: 8

— Family/Model/Stepping: 6 / 85 / 7
— MHz (min/max): 800 / 3200
— Cache L1 i & d / L2 / L3: 512 KB / 16 MB / 22 MiB
— Memory: 32 GB

– Node 0 / node 1: 16 GB / 16 GB
— Disk / Filesystem: Rotational device (no SSD) / ext4

The Hardware
Experimental Setup

6

Copyright © SUSE 2021

The Hardware
Experimental Setup

7

Copyright © SUSE 2021

KVM

QEMU

— Version 5.2.0 (built from sources)

Libvirt

— Version 7.0.0 (built from sources)

KubeVirt

K8s

— Version 1.21
— Cont. runtime: docker (stock distro one)

KubeVirt

— Version 0.44.0 (latest)
— includes QEMU 5.2.0 & Libvirt 7.0.0

Experimental Setup
The Software - Host

Host OS

— Ubuntu 20.04.2 LTS, Kernel 5.4.0 (stock distro one)

8

https://releases.ubuntu.com/20.04/

Copyright © SUSE 2021

(Virtual) Hardware:

— 1 vCPU / 4 vCPUs
— 8 GB RAM
— File backed, raw-format, pre-allocated disk image

OS:

— openSUSE Leap 15.2, kernel 5.3.18 (stock distro one)

Benchmarking Suite:

— MMTests (see also: Scheduler benchmarking with MMTests)
— Benchmarks were running inside the VMs

Experimental Setup
The Software - Guest (both KVM & KubeVirt)

9

https://get.opensuse.org/leap/
https://github.com/gormanm/mmtests
https://lwn.net/Articles/820823/

Copyright © SUSE 2021

Cyclictest

— 1 ms wakeups, FIFO priority, Hackbench in background as noise
— Runs: threads pinned to vCPUs, threads not pinned (unbound)

NASA Parallel Benchmark

— Parallelized with OpenMP, 2 threads (== half the nr. of vCPUs)
— Runs: various computational kernels (bt, cg, ep, ft, is, sp, ua)

STREAM

— Parallelized with OpenMP, 2 threads (== half the nr. of vCPUs)
— Runs: copy, scale, add, triadd

The Benchmarks
Experimental Setup

10

Copyright © SUSE 2021

Hackbench

— Processes, communicating via pipes
— Runs: 2 thread groups (80 tasks), 4 thread groups (160 tasks)

Kernbench

— Building vmlinux, with defconfig
— Runs: make -j 1, make -j 2, make -j 4 (2 == half the nr. of vCPUs, 4 == nr. of vCPUs)

iozone

— Synchronous IO
— Write, rewrite, read, reread, random red, random write, backward read
— Runs: 1GB, 2GB, 4GB

The Benchmarks
Experimental Setup

11

Copyright © SUSE 2021

VM Size & Configuration

— 1 vCPU / 4 vCPUs
— Different combinations of vCPU pinning and VM virtual topology

Host conditions

1. Idle:
– Nothing ⇒ Only our VM running

2. Loaded:
– synthetic load (stress-ng):

– Total host load ~ 1400% + our VM out of 3200%
– E.g., simulating 7 other VMs (==> 8 VMs in total), 4 vCPUs, each 50% busy

3. Higly Loaded
– synthetic load (stress-ng):

– Total host load ~ 2800% + our VM out of 3200%
– E.g., simulating 7 other VMs (==> 8 VMs in total), 4 vCPUs, each 100% busy

Different Running Conditions
Experimental Setup

12

https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng

Copyright © SUSE 2021

— Transparent / 2MB / 1GB huge pages
— Memory pinning
— virtual CPU (vCPU) pinning
— Emulator threads pinning
— IO threads pinning
— Virtual topology
— Exposure/Availability of host CPU

features
— Optimized spinlocks & vCPUs

yielding/idling

(Semi-)Static resource allocation

— Less overhead
— Fewer/No interference
— More control
— More difficult to manage
— Less flexible

KVM Tuning
Let’s Try to Improve Performance

Memory for the VM will be allocated on using specific
pages size and on a specific host NUMA node

vCPUs/IO/QEMU threads will only run on a specific
subset of the host’s physical CPUs (pCPUs)

The VM vCPUs will be arranged in cores, threads, etc.
The VM will use TSC as clocksource, etc. Check, e.g.:
“Virtual Topology for Virtual Machines: Friend or Foe?”

Disabling PV-Spinlocks and PLE, etc. Using
cpuidle-haltpoll, etc. Check, e.g.: “No Slower than
10%!”

Icons by Roundicons @ www.flaticon.com

13

https://www.youtube.com/watch?v=8yA2SNnx2Ko
https://youtu.be/3tUTxGpwMUc?t=1493
https://youtu.be/3tUTxGpwMUc?t=1493
https://roundicons.com/
http://www.flaticon.com

Copyright © SUSE 2021

Larger than 4k pages (2MB, 1GB):

— Faster page walks
— Reduced TLB pressure
— Transparent

– Use huge pages automatically, as
much as possible

– Dynamic online page merges/splits
– overhead & fragmentation

— Pre-allocated
– Less overhead
– Smaller fragmentation
– Less flexible

— Can be used both on host and in guest
– Double the benefits!

KVM Tuning
Icons by Smashicons and Payungkead @ www.flaticon.com

Page Table Page Table Page! (4k)

CPU

TLB

Page Table Page! (2MB, 1GB)

CPU

TLB

Huge Pages

RAM

RAM

14

https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/payungkead
http://www.flaticon.com

Copyright © SUSE 2021

— Real HW has physical topology
– NUMA nodes, sockets, cores, threads
– Improved performance and scalability

— VMs (with > 1 vCPUs) can have virtual
topology

– virtual NUMA nodes, virtual sockets,
virtual cores, virtual threads

— VM kernel and apps can make topology
aware optimizations (e.g., scheduling)

— Default VM topology:
– all vCPUs are sockets

KVM Tuning
Virtual Topology

VM v0 v1 v2 v3
virtual
cores

virtual
socket

virtual
CPUs

v0 v1 v2 v3

v0 v1 v2 v3

v0 v1 v2 v3

v0 v1 v2 v3

v4 v5 v6 v7

4 vCPUs: 1 socket,
4 cores, 1 thread

4 vCPUs: 1 socket,
1 cores, 4 threads

4 vCPUs: 1 socket,
2 core, 2 threads

8 vCPUs: 2 sockets,
4 cores, 2 threads

15

Copyright © SUSE 2021

VM-wide vCPU Pinning:

— v0, v1, v2, v3 will run on pCPUs p2, p3,
p4, p5; v0 will run on pCPUs p0, or p1

— e.g., v0 can run on p2 now and on
p4 later; v0 can run p0 and then p1, ...

1-to-1 vCPU Pinning:

— Each vCPU will always run on a specific
pCPU

— E.g., v0 will always run on p0, v1 on p1,
v2 on p2, v3 on p3 and v0 on p4

KVM Tuning
vCPU Pinning

p0 p1 p2 p3 p4 p5

4 vCPUs VM

HOST

physical
cores

physical
socket L3 Cache

physical
CPUs

v0 v1 v2 v3 p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

1 vCPU VM

v0

v0

16

Copyright © SUSE 2021

— Mapping the virtual topology on the
physical topology:

– pin vCPUs of v-cores on pCPUs
of p-cores, etc

— Topology aware optimizations in VM
becomes really effective

– Works best with 1-to-1 pinning
— Performance may get worse if done wrong!

KVM Tuning
Virtual Topology + vCPU Pinning

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

v0 v1 v2 v3

p0 p1 p2 p3 p4 p5

v0

v0

v0

17

Copyright © SUSE 2021

Memory Pinning

— All the memory for the VM allocated on
one (if possible) NUMA node

— Works best together with vCPU pinning

“Passthrough” of the CPU Model

— Host pCPU features, special instruction
sets, etc are available inside the VM

— We did it in our experiments

KVM hint-dedicated & cpuidle-haltpoll

— Further optimization when running on
static partitioned host

— We don’t use them in our experiments

KVM Tuning
CPU Model + Memory Pinning

p0 p1 p2 p3 p4 p5

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

Host NUMA nodes
(= host sockets, in
 this case)

18

https://qemu-project.gitlab.io/qemu/system/qemu-cpu-models.html

Copyright © SUSE 2021

Emulator threads

— Other QEMU threads (main event loop,
SPICE, migration, …)

— May interfere with & “steal” resources
from the vCPUs

– Can be moved “out of the way” by
pinning them on different pCPUs

IO Threads

— Break down QEMU (IO) event handling
— Improved scalability:

– Parallelizing work
– Reduce lock contention

— Can have many IO Threads
– E.g., 1 per block device
– No more than nr. of pCPUs

— IO Threads may be pinned to pCPUs

KVM Tuning
Emulator and IO Threads Pinning

Non pinned
IO Threads

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

1 IO Thread
pinned to
socket 0 p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

19

Copyright © SUSE 2021

— Caching
– `none` (see “Async IO Model” below)

— Async. IO Model
– `threads` (default)

– QEMU user-space thread pool
– IOzone & kernbench lasting a few hours... Not sure how many, killed before it

finished!
– `native`

– Linux kernel AIO
– IOZone & kernbench, reasonable durations

– `io_uring`
– future investigations

– Avoid trims (so image stays pre-allocated!)
— Multi-queueing

– (if available)

Disk IO Tuning
KVM Tuning

20

Copyright © SUSE 2021

Experimented Pinning + Topology Configuration ⇐ Manually Crafted by Us
KVM Tuning

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin_def

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

vtune

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

def
— 4 sockets, 1

core, 1 thread
— No pinning

— 4 sockets, 1
core, 1 thread

— 1-to-1 pinning

— 1 socket, 2 cores, 2
threads

— 1-to-1 pinning

— 1 socket, 4 cores, 1
threads

— 1-to-1 pinning

Host Load
was pinned
as well!

21

Copyright © SUSE 2021

Host Load
was pinned
as well!

Experimented Pinning + Topology Configuration ⇐ Manually Crafted by Us
KVM Tuning

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin_def

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

vtune

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

def
— 4 sockets, 1

core, 1 thread
— No pinning

— 4 sockets, 1
core, 1 thread

— 1-to-1 pinning

— 1 socket, 2 cores, 2
threads

— 1-to-1 pinning

— 1 socket, 4 cores, 1
threads

— 1-to-1 pinning
<vcpu placement='static'>4</vcpu>
<cpu mode='host-model' check='partial'/>

<vcpu placement='static'>4</vcpu>
<cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='17'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='18'/>
</cputune>
<cpu mode='host-passthrough' check='none'>
 <topology sockets='1' dies='1' cores='4' threads='1'/>
</cpu>

<vcpu placement='static'>4</vcpu>
<cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='17'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='18'/>
</cputune>
<cpu mode='host-passthrough' check='none'>

<vcpu placement='static'>4</vcpu>
<cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='17'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='18'/>
</cputune>
<cpu mode='host-passthrough' check='none'>
 <topology sockets='1' dies='1' cores='2' threads='2'/>
</cpu>

22

Copyright © SUSE 2021

Host Load
was pinned
as well!

Experimented Pinning + Topology Configuration ⇐ Manually Crafted by Us
KVM Tuning

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin_def

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

vtune

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

def
— 4 sockets, 1

core, 1 thread
— No pinning

— 4 sockets, 1
core, 1 thread

— 1-to-1 pinning

— 1 socket, 2 cores, 2
threads

— 1-to-1 pinning

— 1 socket, 4 cores, 1
threads

— 1-to-1 pinning

Perfect match between virtual and physical topologies:
● Full virtual cores ⇒ Full physical cores
● v0 & v1: virtual hyperthreads ⇒ p0 & p1: physical hyperthreads

We expect best performance!

23

Copyright © SUSE 2021

Experimented Pinning + Topology Configuration ⇐ Automatically Done by KubeVirt
KubeVirt Tuning

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin_def

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

vtune

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

def
— 4 sockets, 1

core, 1 thread
— No pinning

— 4 sockets, 1
core, 1 thread

— 1-to-1 pinning

— 1 socket, 2 cores, 2
threads

— 1-to-1 pinning

— 1 socket, 4 cores, 1
threads

— 1-to-1 pinning

Host Load
was pinned
as well!

24

Copyright © SUSE 2021

Host Load
was pinned
as well!

Experimented Pinning + Topology Configuration ⇐ Automatically Done by KubeVirt
KubeVirt Tuning

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin_def

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

vtune

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

def
— 4 sockets, 1

core, 1 thread
— No pinning

— 4 sockets, 1
core, 1 thread

— 1-to-1 pinning

— 1 socket, 2 cores, 2
threads

— 1-to-1 pinning

— 1 socket, 4 cores, 1
threads

— 1-to-1 pinning
spec:
 domain:
 resources:
 requests:
 cpu: 4

spec:
 domain:
 cpu:
 sockets: 1
 cores: 4
 threads: 1
 model: host-passthrough
 dedicatedCpuPlacement: true

spec:
 domain:
 resources:
 requests:
 cpu: 4
 cpu:
 model: host-passthrough
 dedicatedCpuPlacement: true

spec:
 domain:
 cpu:
 sockets: 1
 cores: 2
 threads: 2
 model: host-passthrough
 dedicatedCpuPlacement: true

25

Copyright © SUSE 2021

Host Load
was pinned
as well!

Experimented Pinning + Topology Configuration ⇐ Automatically Done by KubeVirt
KubeVirt Tuning

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin_def

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

vtune

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

pin

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

def
— 4 sockets, 1

core, 1 thread
— No pinning

— 4 sockets, 1
core, 1 thread

— 1-to-1 pinning

— 1 socket, 2 cores, 2
threads

— 1-to-1 pinning

— 1 socket, 4 cores, 1
threads

— 1-to-1 pinning

Wait… What ?!?
● Full virtual cores ⇒ Mixed & mismatched physical cores !!!
● v0 & v1: virtual hyperthreads

○ Pinned to p0 & p2 ...
○ … but the real physical hyperthreads are p0 & p1 !!!

We expect best ??? performance!

26

Copyright © SUSE 2021

 STREAM
KVM vs. KubeVirt

Idle Highly loaded

https://www.cs.virginia.edu/stream/

Loaded

Best
performance
Guarantees

2 vCPUs within
same core
competes

vCPU pinning is
out of KubeVirt
control

Matching
host topology

The gap
became
smaller

Almost no
difference

27

https://www.cs.virginia.edu/stream/

Copyright © SUSE 2021

NAS Parallel Benchmarks (with OpenMP)
KVM vs. KubeVirt

Idle Highly loaded

https://www.nas.nasa.gov/software/npb.html

Loaded

28

Difference is
small

Obvious
improvement
with vtune

mismatched
topology leads
to disaster

https://www.nas.nasa.gov/software/npb.html

Copyright © SUSE 2021

Cyclictest (pinned threads)
KVM vs. KubeVirt

Idle Highly loaded

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

Loaded

Benefits of
pinning

29

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

Copyright © SUSE 2021

Cyclictest (unbound threads)
KVM vs. KubeVirt

Idle Highly loaded

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

Loaded

30

Something we
don’t quite
understand

Larger latency
with high load

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

Copyright © SUSE 2021

Kernbench
KVM vs. KubeVirt

Idle Highly loaded

http://ck.kolivas.org/apps/kernbench/kernbench-0.50/

Loaded

31

pinned, no cpu
migration improves
performance

vtunes
beats def

Default beats
vtune due to
saturation

Can’t help with
mismatched
topology

tuning became
effect with load

all vcpus are busy,
topology doesn’t
really matter

http://ck.kolivas.org/apps/kernbench/kernbench-0.50/

Copyright © SUSE 2021

IOzone - Sequential Read
KVM vs. KubeVirt

Idle Highly loaded

https://www.iozone.org/

Loaded

32

https://www.iozone.org/

Copyright © SUSE 2021

IOzone - Random Read
KVM vs. KubeVirt

Idle Highly loaded

https://www.iozone.org/

Loaded

33

https://www.iozone.org/

Copyright © SUSE 2021

IOzone - Sequential Write
KVM vs. KubeVirt

Idle Highly loaded

https://www.iozone.org/

Loaded

34

https://www.iozone.org/

Copyright © SUSE 2021

IOzone - Random Write
KVM vs. KubeVirt

Idle Highly loaded

https://www.iozone.org/

Loaded

35

https://www.iozone.org/

Copyright © SUSE 2021

- Matching host CPU topology guarantee good performance

- Host scheduler can manage well in default case if there is not much load

- Inherent limitation of Kubevirt with CPU pinning

- CPU allocation is managed by CPU manager in K8s

- default configuration works well in general

- KubeVirt can be improved to avoid mismatching cpu topology

Conclusions

36

Copyright © SUSE 2021

© 2020 SUSE LLC. All Rights Reserved. SUSE
and the SUSE logo are registered trademarks
of SUSE LLC in the United States and other
countries. All third-party trademarks are the
property of their respective owners.

For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

Maxfeldstrasse 5

90409 Nuremberg

www.suse.comThank you

37

