
A Security Journey
Andreea Florescu, fandree@amazon.com



What is rust-vmm?



A Short Intro

• Virtualization components written in Rust

• Focus on:

• Quality vs Features

• Extensibility and Usability

• Main customers: VMMs (e.g Cloud Hypervisor, Firecracker)



Components - Examples

• Hypervisor Support:

• KVM -> kvm-ioctls & kvm-bindings

• Microsoft Hyper-V -> mshv-ioctls & mshv-bindings

• Devices:
• Serial Console, RTC -> vm-superio

• MMIO Bus, PIO Bus, Device Managers

• Virtio:
• Queues, Virtio Device -> vm-virtio

• Vhost, Vhost User I2C, Vhost User Backend



The Security Story



Security Journey

• Applying security at multiple levels:
• Organization Setup

• Development

• Documentation

• Operating in production



Organization Setup

• Writing components in Rust

• One Rust package (crate) per component

• All components run the same set of tests (unit tests, build, 
linters)

• Audits for vulnerabilities in dependencies



Audit for Vulnerabilities

• cargo audit
• Checks a Rust vulnerability database

• Vulnerable versions of dependencies

• Dependency versions typically locked in Rust binaries

• Rust-vmm = library components => NO fixed dependencies

• Audit checks MUST be run in consumer products



Development

• Reduced number of (external) dependencies
• Common dependencies: libc, serde

• 0-dependency components: vm-fdt, vm-superio, vm-device

• Negative testing

• Reduce the usage of unsafe code



Reduce Unsafe Code

• DON’TS:
• Write everything in a big unsafe block

• DOs:
• Limit the unsafe code

• Document why it’s safe/unsafe -> reduces the risk of code being 
misused



Documentation

• Document unsafe public functions -> required by Rust

• Threat model documentation:
• Trusted/untrusted

• Threats and mitigations

• Document expectations from consumer products



Case Study: Serial Console
Threat Model



Overly Simplified Operation Mode

• UART 16550A serial port with a 64-byte FIFO

• Receiving/Transmitting Data

HOST GUEST

…
IN FIFO

Serial Input
Enqueue Bytes read

Serial Console 
Driver

receive

Serial Output
transmitwrite

VMM Serial Console

https://en.wikipedia.org/wiki/16550_UART


Serial Console – Threat Model

Threat model available at rust-vmm/vm-superio

1. A malicious guest generates large memory allocations by 
flooding the serial console input:

• CVE-2020-27173

• Fix at the emulation level: limit input FIFO & return errors when FIFO 
full

• Fix at the VMM level: handle FIFO full errors

https://github.com/rust-vmm/vm-superio#threat-model
https://nvd.nist.gov/vuln/detail/CVE-2020-27173


Serial Console – Threat Model (2)

2. A malicious guest can fill up the host disk by 
generating a high amount of data to be written to the 
serial output.

• Output in full control of the consumer

• Mitigation only possible at the VMM level
• Rate limit the output (e.g. ring buffer, named pipe)



Lessons Learned

Read code with security in mind
Follow the input/output



Fuzzing Virtualization Components

• Component based fuzzing

• Advantages:
• Fuzzing library code -> easy to pass input to target interface

• Test components in isolation

• Low level testing

• Disadvantage:
• Testing side effects becomes harder

• Identified issues might not reproduce

• Mock driver code



Preparing Virtio Components for Fuzzing

• Identify the target interfaces:
• Queues

• Device Implementation (virtio-blk)

• Build reusable mock-ups:
• Partially implemented as part of GSoC 2021

• Create descriptor chains

• Write arbitrary (fuzz) data in descriptor chains



Preparing Virtio Components for Fuzzing (2)

• Create a specialized mock for devices:
• Balance between random data and useful data

• Re-use mock for unit/integration tests



What if you discover a 
vulnerability?



Reporting Security Vulnerability

• Find the appropriate security vulnerability process

• rust-vmm/${name}/security/policy
• https://github.com/rust-vmm/vm-virtio/security/policy

• https://github.com/rust-vmm/vm-virtio/security/policy

• …

• tl;dr: send encrypted email to rust-vmm maintainers

https://github.com/rust-vmm/vm-virtio/security/policy
https://github.com/rust-vmm/vm-virtio/security/policy


Key Takeaways



Apply security at 
all levels from 
project setup to 
development, and 
operation

Read code with a 
security hat on 
(and then write 
that threat model)

Use the security 
process for 
reporting 
vulnerabilities



Thank you!
P.S. Photo from Tarifa, Spain, 2019


