vdpa-blk: Unified Hardware and Software Offload for virtio-blk

KVM Forum 2021

Stefano Garzarella <sgarzare@redhat.com>

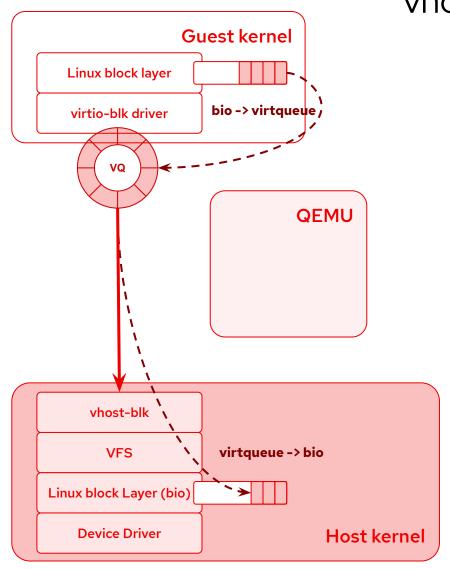
Senior Software Engineer @ Red Hat

Agenda

- Goals and benefits of vdpa-blk
- virtio-blk request path
 - vhost acceleration
 - io_uring passthrough
- vDPA
 - overview
 - virtio-blk devices
- QEMU
 - block layer features
 - o auto-switching: fast and slow path
- Current status and next steps

Goals and benefits of vdpa-blk

- Unified software stack
 - supports virtual machines, containers, and applications
 - supports both hardware and software virtio-blk devices
 - QEMU's storage virtualization features (image file formats, block jobs, etc) available for virtual machines
 - high-performance implementation suitable for high IOPS
 NVMe drives
- Developing new accelerators PCI devices?
 - participate and take advantage of the vdpa-blk stack!
- vDPA website: https://vdpa-dev.gitlab.io



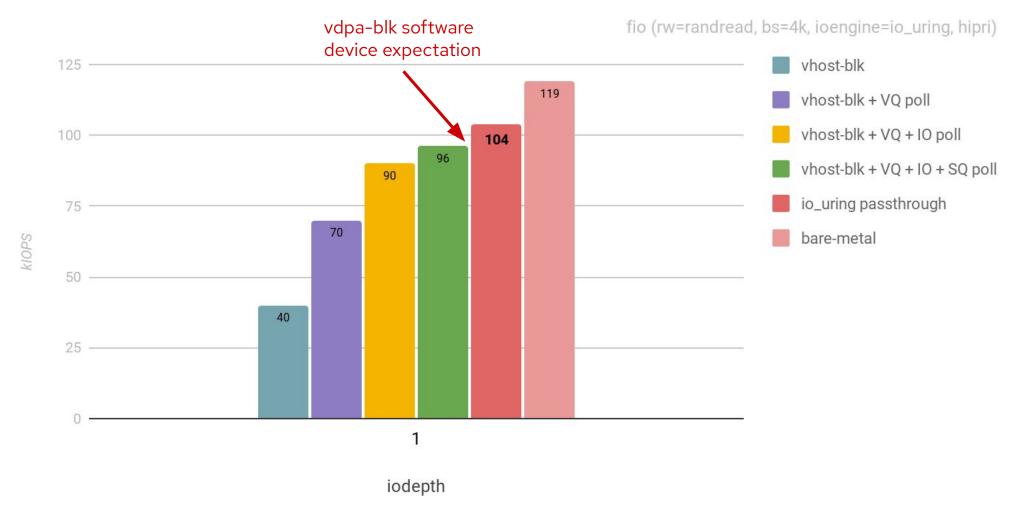
Guest kernel Linux block layer bio -> virtqueue virtio-blk driver **QEMU** virtio-blk device **QEMU block layer** virtqueue -> giov AIO engine (Linux AIO, io_uring) qiov -> iocb / sqe Linux AIO / io_uring iocb / sqe -> bio Linux block Layer (bio) **Device Driver** Host kernel

virtio-blk request path

- Multiple layers to cross
 - Linux block layer -> virtio-blk
 - virtio-blk -> QEMU block layer
 - QEMU block layer -> Linux AIO / io_uring
 - Linux AIO / io_uring -> VFS
 - VFS -> Linux block layer
- Multiple request translations
- Multiple queues
- System calls to interact with host kernel

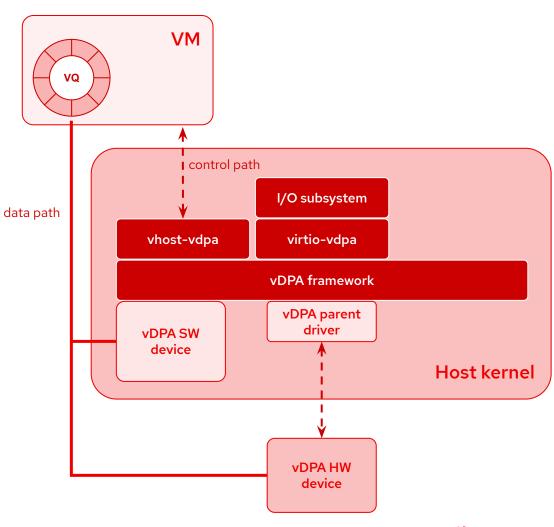
vhost acceleration

- in-kernel virtio device emulation
- QEMU bypassed
 - QEMU's storage features not available (image file formats, block jobs, etc)
- vhost-blk
 - proposed multiple times, but never merged upstream
 - Asias He's vhost-blk [2012]
 https://lore.kernel.org/patchwork/patch/344823/
 - bio API
 - Vitaly Mayatskih's vhost-blk [2018]
 https://patchwork.kernel.org/cover/10665995/
 - VFS API

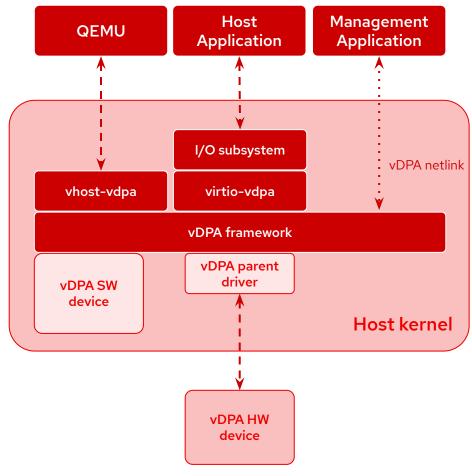

Guest kernel Linux block layer bio -> sqe virtio-blk driver **QEMU** io_uring VFS sqe -> bio Linux block Layer (bio) **Device Driver** Host kernel

io_uring passthrough

- io_uring's SQ/CQ are memory mapped in the guest
 - require changes in the guest kernel driver
- virtio-blk driver modified
 - handle io_uring's SQ/CQ memory mapped
 - eventfd registered to inject interrupts (irqfd)
- Polling
 - SQPOLL enabled in the host to avoid notification from the guest (vmexit)
 - IOPOLL enabled in the host to avoid IRQs in the host

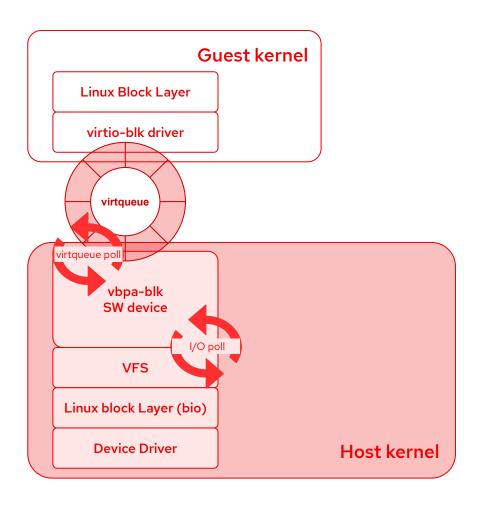

vhost-blk vs io_uring passthrough

virtio Data Path Acceleration (vDPA)


- vDPA device
 - VIRTIO compliant data path
 - vendor specific control path
 - small vDPA driver for the control part
- Designed for hardware accelerators
 - o software accelerators also possible
 - guest memory locked
 - memory overcommit not supported yet
 - fast access to virtqueues
 - vhost needs copy_in/copy_out

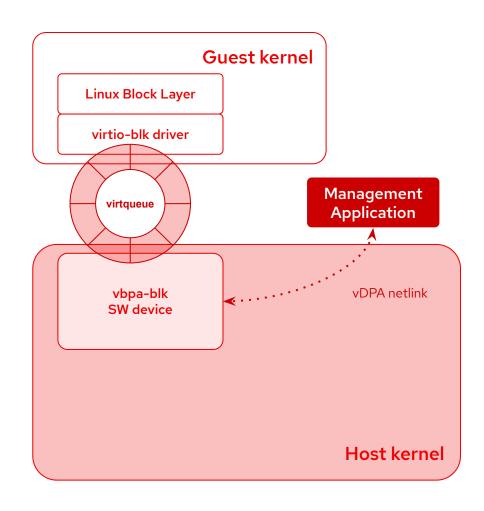
virtio Data Path Acceleration (vDPA)

- Unified software stack for vDPA devices
 - vhost-vdpa
 - interface for userspace/guest virtio driver
 - vhost generic uAPI + vhost-vdpa uAPI
 for full device abstraction
 - virtio-vdpa
 - interface for host virtio driver
 - bare metal or containerized applications
 - Management API


Guest kernel Linux Block Layer virtio-blk driver **QEMU** vhost-vdpa-blk data path control path vhost-vdpa vDPA framework vdpa-blk HW parent driver vbpa-blk SW device Host kernel vDPA block **HW** device

vDPA block devices

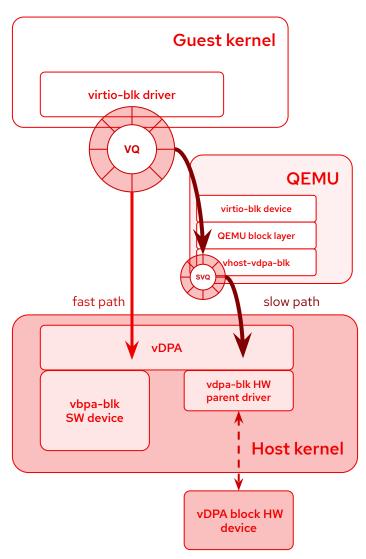
- Unified software stack for software and hardware virtio-blk devices
 - Guest kernel (virtio-blk device driver)
 - QEMU
 - Host kernel (vDPA framework, vhost-vdpa)
- Custom code
 - vDPA parent driver
 - custom hardware, Smart NIC, FPGA
 - vDPA software device
 - in-kernel virtio-blk device emulation


vDPA block: software device

- VFS integration
 - virtqueue <-> VFS (struct kiocb)
- Fallback when HW accelerators are not available
- Polling
 - virtqueue polling (similar to io_uring's SQPOLL)
 - potentially guests can submit I/Os without vmexits
 - I/O polling (similar to io_uring's IOPOLL)
 - busy-waiting for an I/O completion
 - opposed to get notifications via an asynchronous IRQ
 - file system or block device must support polling

vDPA block: software device

- Management API
 - based on vDPA netlink API
 - create/destroy vdpa-blk software devices
 - setup virtio parameters
 - virtqueues parameters (e.g. queue size)
 - virtio-blk configuration (e.g. block size)
- Custom API
 - attach to block devices / raw files
 - custom parameters (e.g. polling)

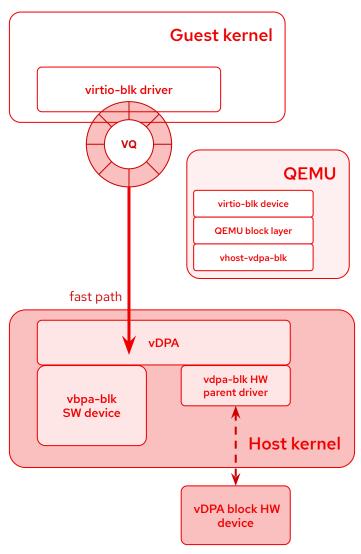

Guest kernel virtio-blk driver **QEMU** virtio-blk device **QEMU** block layer vDPA vdpa-blk HW parent driver vbpa-blk SW device **Host kernel** vDPA block HW device

QEMU block layer

- Bypassed when using accelerators
 - Hardware
 - Software
- QEMU storage virtualization features
 - Image file formats (e.g. qcow2)
 - I/O throttling
 - Snapshot
 - Encryption
 - Incremental backup

QEMU auto-switching: fast and slow path

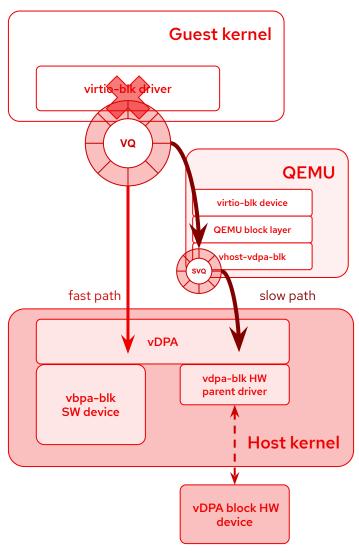
Fast path


- HW / SW vdpa-blk accelerators
 - raw files / block devices through software device
- guest virtqueue (VQ) exposed directly to the vDPA device

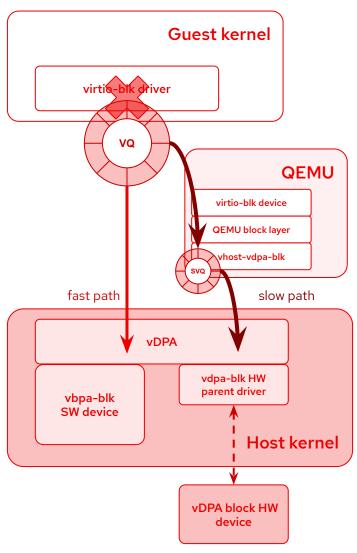
Slow path

- QEMU storage features needed
- Guest RAM overcommit
- Live migration
- QEMU processes guest virtqueue (VQ)
 - virtio-blk device already available
 - shadow virtqueue (SVQ) exposed to the vDPA device
 - Eugenio Pérez is working on this topic

[RFC v3 00/29] vDPA software assisted live migration https://lore.kernel.org/qemu-devel/20210519162903.1172366
-1-eperezma@redhat.com/


Runtime switching between fast and slow path

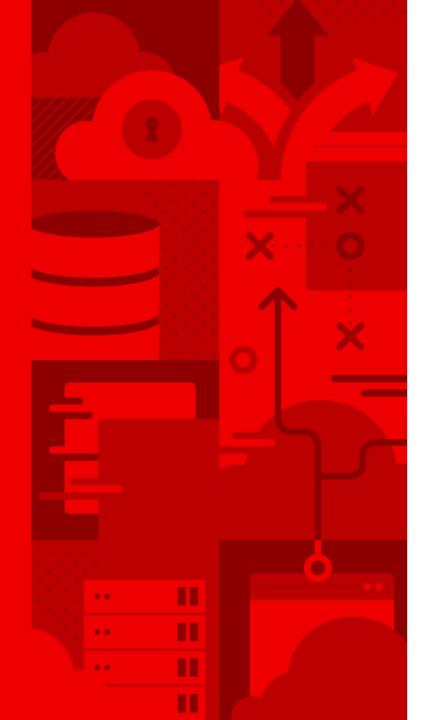
- Several operations may require switching at runtime
 - Live migration
 - I/O throttling
 - Snapshot
- Example
 - guest is using the fast path
 - QEMU storage features not needed
 - guest virtqueue (VQ) processed by vDPA device
 - an operation is requested where we need QEMU to process the virtqueue ...


Runtime switching between fast and slow path

- ... example continue
 - switch to slow path
 - stop guest driver from queuing new requests
 - wait for the vDPA device to complete all in-flight requests
 - QEMU takes over the Guest virtqueue (VQ)
 - QEMU allocates Shadow virtqueue (SVQ) and exposes it to the vDPA device
 - re-start guest driver to queue new request
 - operation is terminated (e.g. live migration) or is no longer required (e.g. I/O throttling) ...

Runtime switching between fast and slow path

- ... example continue
 - switch back to fast path
 - stop guest driver from queuing new requests
 - wait for in-flight requests to complete
 - QEMU passes control of guest virtqueue (VQ) to the
 vDPA device
 - re-start guest driver to queue new request



vdpa-blk: current status and next steps

- Merged upstream
 - vDPA block simulator in the Linux kernel 5.13+
- Work to do (collaborations are welcome :-)
 - Linux
 - vdpa-blk software device
 - QEMU
 - vdpa-blk support
 - fast / slow path auto-switching
 - Hardware (custom accelerators, Smart NICs, FPGA)
- Join us and take advantage of the vdpa-blk stack!
 - https://vdpa-dev.gitlab.io

Thank you!

Stefano Garzarella <sgarzare@redhat.com>

Blog: https://stefano-garzarella.github.io/

IRC: **sgarzare** on #qemu irc.oftc.net

- in linkedin.com/company/red-hat
- f facebook.com/redhatinc
- youtube.com/user/RedHatVideos
- twitter.com/RedHat

