
How hard could it be to flip a bit?
KVM PV feature enablement up the virtualization stack.

KVM Forum 2021
Vitaly Kuznetsov <vkuznets@redhat.com>

mailto:vkuznets@redhat.com

About myself

About

● KVM contributor and reviewer
Areas of interest include:
○ PV features
○ Hyper-V emulation, Windows guests
○ Nesting including Hyper-V-on-KVM and KVM-on-Hyper-V

● “Occasional” QEMU developer
○ Hyper-V and KVM PV feature enablement.

Paravirtualized features in KVM

PV features in KVM

“Extra” features, not present in the emulated hardware:

● “Native” KVM PV features:
○ kvmclock, kvm-nopiodelay, kvm-asyncpf, kvm-steal-time, kvm-pv-eoi,

kvm-pv-unhalt, kvm-pv-tlb-flush, kvm-async-pf-vmexit, kvm-pv-ipi,
kvm-poll-control, kvm-pv-sched-yield, kvm-asyncpf-int,
kvm-msi-ext-dest-id, kvm-hc-map-gpa-range, kvm-migration-control

● Emulating other hypervisors:
○ Hyper-V emulation

■ hv-relaxed, hv-vapic, hv-spinlocks, hv-vpindex, hv-runtime,
hv-crash, hv-time, hv-synic, hv-stimer, hv-tlbflush, hv-ipi,
hv-reset, hv-frequencies, hv-reenlightenment, hv-evmcs,
hv-stimer-direct, hv-no-nonarch-coresharing

○ Xen emulation
■ Hypercalls, shared_info, vcpu_info, vcpu_runstate info, …

○ Vmware hypervisor emulation
■ ‘Vmware backdoor’ (vmport)

Paravirtualized features in KVM

PV features in KVM

● PV features are:
○ Performance related.
○ Introducing some ‘unique’ capabilities unavailable/unneeded in bare

hardware.

● It may be hard to notice the absence of a performance related feature
○ Your guest could’ve run faster!

● Normally, guest decides whether to use the feature or not
○ There is (almost) no reason to not give all performance related features to

all guests.

Paravirtualized features in KVM

PV features in KVM

● Performance related PV features are usually implemented in KVM itself.

● PV features need to be ‘presented’ to guests:
○ The ‘usual’ interface for feature discovery is CPUID.
○ Userspace VMM (e.g. QEMU) has to:

■ Query KVM for the supported feature set.
■ Expose a subset to the guest by populating guest visible CPUIDs.

POP QUIZ!

PV features in KVM

● Can a KVM guest VM use a PV feature not exposed to it in CPUID but supported by
KVM?

POP QUIZ!

PV features in KVM

● Can a KVM guest VM use a PV feature not exposed to it in CPUID but supported by
KVM?
○ Yes!
○ Two recently added options to ‘harden’ the behavior:

■ KVM_CAP_ENFORCE_PV_FEATURE_CPUID - for ‘native’ KVM PV
features

■ KVM_CAP_HYPERV_ENFORCE_CPUID - for Hyper-V PV features.
■ None of them are supported by QEMU atm.

Paravirtualized features in KVM

PV features in KVM

● PV features need to be ‘presented’ to guests
○ The ‘usual’ interface for feature discovery is CPUID
○ VMM (e.g. QEMU) has to:

■ Query KVM for the supported feature set
■ Expose a subset to the guest by populating guest visible CPUIDs

So flipping a bit is all it takes VMM to enable a new PV feature! Sounds really easy!

“Native”
KVM PV feature
enablement

“Example” PV feature

Interrupt based asynchronous page fault mechanism (kvm-asyncpf-int):

● Significantly improves throughput in memory-overcommitted environments.

● Merged into Linux-5.10, supported by QEMU-5.2.0+.

● Replaces legacy asynchronous page fault mechanism (kvm-asyncpf) which is now
deprecated/disabled in KVM.

“Native” KVM PV features

KVM PV feature enablement with QEMU

Example QEMU command line:

qemu-system-x86_64 -machine q35,accel=kvm -cpu Skylake-Server

● Does this expose any ‘native’ KVM PV features to the guest?

“Native” KVM PV features

KVM PV feature enablement with QEMU

Example QEMU command line:

qemu-system-x86_64 -machine q35,accel=kvm -cpu Skylake-Server

● Does this expose any ‘native’ KVM PV features to the guest?

○ Yes!

“Native” KVM PV features

KVM PV feature enablement with QEMU

target/i386/kvm/kvm-cpu.c (excerpt, shortened):

/*
 * KVM-specific features that are automatically added/removed
 * from cpudef models when KVM is enabled.
 *
 * NOTE: features can be enabled by default only if they were
 * already available in the oldest kernel version supported
 * by the KVM accelerator (see "OS requirements" section at
 * docs/system/target-i386.rst)
 */
static PropValue kvm_default_props[] = {
 { "kvmclock", "on" },
 { "kvm-nopiodelay", "on" },
 { "kvm-asyncpf", "on" },
 { "kvm-steal-time", "on" },
 { "kvm-pv-eoi", "on" },
 { "kvmclock-stable-bit", "on" },
};

“Native” KVM PV features

KVM PV feature enablement with QEMU

docs/system/target-i386.rst:

On x86_64 hosts, the default set of CPU features enabled by the KVM
accelerator require the host to be running Linux v4.5 or newer. Red Hat
Enterprise Linux 7 is also supported, since the required
functionality was backported.

$ git show v4.5
...
commit b562e44f507e863c6792946e4e1b1449fbbac85d (tag: v4.5)
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Sun Mar 13 21:28:54 2016 -0700

 Linux 4.5

“Native” KVM PV features

KVM PV feature enablement with QEMU

“Native” KVM PV features

● For a new PV feature in KVM
○ It’ll take roughly 5 years before it can be enabled ‘by default’.
○ Manual enablement is possible:

qemu-system-x86_64 -machine q35,accel=kvm -cpu Skylake-Server,+kvm-asyncpf-int ...
○ “-cpu host” also enables everything (but generally it is not migratable):

qemu-system-x86_64 -machine q35,accel=kvm -cpu host ...
○ Enablement should also happen all the way up the stack

(QEMU -> libvirt -> ...).
○ Not all users are aware of the new feature and updating VM configs is not an

easy task.
○ The result is low adoption of new PV features. Users don’t benefit from new

PV features in KVM.
○ Can we do better?

KVM PV feature enablement with QEMU

● Why can’t we enable new PV features by default?
○ QEMU will not start on anything but the latest KVM

● Can we enable the feature conditionally, only if it is supported by the host?
○ The same QEMU command line should create the exact same configuration,

this is crucial for live migration.
○ We could support migrating VMs to destination which supports a superset of

PV features but not the other way around.

“Native” KVM PV features

KVM PV feature enablement with QEMU

● Can we enable new features by default for new machine types?

 qemu-system-x86_64 -machine q35,accel=kvm -cpu Skylake-Server …

Equals to (QEMU-6.1):

qemu-system-x86_64 -machine pc-q35-6.1,accel=kvm -cpu Skylake-Server …

○ It is expected that the latest machine type can be created even when the host
has the oldest supported kernel (4.5 atm).

○ Changing this will force users to hardcode older machine types in their
configurations.

○ This may reduce the adoption of all new features in QEMU, not only KVM PV.

“Native” KVM PV features

KVM PV feature enablement with QEMU

● Can we have another “configuration dimension” (made up syntax)?

 qemu-system-x86_64 -machine q35,accel=kvm -host-platform 5.14 -cpu …

○ Pros:
■ Clearly separates the required host version from machine type.
■ Can be used for all kernel-dependent features in QEMU (e.g. vhost,

vfio, …).
○ Cons:

■ Users will still have to manually update their configurations.
■ Test matrix is going to explode ([‘machine type’ x ‘cpu type’] vs

[‘machine type’ x ‘cpu type’ x ‘host version’]).
■ Unclear what to do with downstream kernels which may have

features backported (-host-platform rhel8.3 maybe?)

“Native” KVM PV features

● Maybe we need to solve the problem on a higher level?
○ Moving the issue up the stack doesn’t magically solve the problem.

○ There are multiple (even open source) higher level applications using
QEMU/KVM stack.

○ All lower levels (e.g. QEMU, libvirt, …) should enable the feature before it is
considered for a high level tool.

○ It is still a hard task to know all possible migration target hosts (and their
kernel versions at the time of migration) in advance.

Additional ideas

“Native” KVM PV features

Additional ideas

● Raise the minimum required KVM version when a new machine type is introduced,
e.g.

○ pc-q35-6.1 requires Linux >= 5.9
○ pc-q35-6.2 requires Linux >= 5.10
○

● Add an option to limit migrations to the same or newer hosts, this will allow to
enable all KVM PV features supported by the source host by default.
qemu-system-x86_64 -machine q35,accel=kvm -migration same-or-newer-host ...

● A new PV interface to revoke features from guests upon migration?

● Better document new KVM PV features when they are introduced
○ There’s no documentation for KVM PV features in QEMU currently. This is

about to change.

“Native” KVM PV features

Hyper-V
PV feature
enablement

Hyper-V PV feature enablement with QEMU

Hyper-V PV features

● Unlike “native” KVM features nothing is enabled by default.

● Generally, users are advised to enable all currently supported Hyper-V
enlightenments.

● Some features (‘hv-time’, ‘hv-stimer’,...) are not really optional as Windows’
performance without them is really poor.
○ Users google for them and hardcode years old suggestion to their

configuration.
○ Real world adoption of new features stays low.

● Non-migratable ‘hv-passthrough’ CPU flag to enable everything supported by the
host already exists.

Enabling all Hyper-V enlightenments by default

Hyper-V PV features

● An effort to introduce migratable ‘hv-default’ CPU flag to enable all currently
supported Hyper-V enlightenments was made. Problems were:
○ It is unclear what should get in the set. “Everything” would require a very

recent kernel. Following QEMU’s “Linux >= 4.5” support promise will leave
too many features out.

○ There are Intel- and AMD- specific enlightenments in Hyper-V (e.g. already
existing ‘hv-evmcs’), it is unclear if these should be included in the
‘hv-default’ set.

● Can be combined with the idea for elevated minimum required Linux version for
newer machine types.

Summary and
future work plans

Summary

PV features in KVM

● There is a problem with PV features enablement up the virtualization stack
causing low adoption of the newly introduced KVM features.

● The problem is fundamentally caused by the architecture of the stack which
consists of loosely coupled components.

● Live migration plays an important role in making the issue hard to resolve.

My future work plans:

PV features in KVM

● Finish this talk and hopefully get some feedback :-)

● Introducing “-host-platform” may be worth a try.

● Raising the required kernel version for new machine types in QEMU is an
alternative approach.

● Hardening: enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID and
KVM_CAP_HYPERV_ENFORCE_CPUID in QEMU.

● Resume ‘hv-default’ work.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you!

