
KVM Dirty Page Tracking
Peter Xu <peterx@redhat.com>, Red Hat

mailto:peterx@redhat.com

Outlines
● Concepts

● Migration & Challenges

● Bitmap copy & atomics

Concepts

What is Dirty Tracking
● Goal: tracking guest memory changes for different reasons

● Types of dirty tracking

○ Synchronous: tracee is blocked

■ Examples: shadow pgtable tracking, VM live snapshots

○ Asynchronous: tracee is not blocked

■ Example: migration, dirty rate measurements

Synchronous Dirty Tracking
● KVM guest page table tracking

○ Used by shadow paging only, two-dimensional paging not needed

○ Invalidate shadow pgtable (L1+L2) when guest pgtable (L1) changes

○ KVM internal interface, usable for kernel drivers only (kvmgt)

● VM live snapshots

○ Snapshot guest device states at a single point in time

○ Based on uffd-wp, only anonymous memory supported

○ Similar to migration, but track dirty page synchronously

Asynchronous Dirty Tracking
● It’s all about migration

● Step 1: Trapping

○ Write-protection

○ PML (Page Modification Logging)

● Step 2: Reporting

○ Dirty log, per-vm, bitmap-based

○ Dirty ring, per-vcpu ring-based

Migrations & Challenges

VM Migrations
● Upstream KVM is evolving with more efficient migrations

○ Keqian’s work on lazy wr-protect of huge pages

■ Further speedup KVM_SET_USER_MEMORY_REGION with init-all-set

○ Ben’s work on the new tdp mmu

■ MMU lock => rwlock, concurrent page faults (including dirty tracking)

○ KVM dirty ring landed

■ Linux v5.11 (Feb 2021) / Qemu v6.1 (July 2021, initial support only)

● QEMU needs to catch up!

● What’s next? “Huge VM migration”

 TB-level Memory
Huge VM Migrations
● Properties

○ More vCPUs (100+)

○ More memories (TB-level+)

○ Have serious & important workloads

○ Quality assurance, even during migration

● Challenges

○ Existing algorithms/structures not scaling

○ Auto-converge not applicable any more

○ Hugetlbfs

CPU
CPU

CPU

CPU

Huge VM Migrations - Challenges & Solutions
● Issue 1: Not-scaling algorithms/structures

○ Long term effort in both QEMU & KVM, already getting better!

● Issue 2: Convergence

○ Postcopy required

● Issue 3: Data copy bottleneck

○ Multi-FD, or

○ setsockopt(MSG_ZEROCOPY), or

○ Both!

Huge VM Migrations - Challenges & Solutions
● Issue 4: High downtime during postcopy (hugetlbfs)

○ Double-map of hugetlbfs can reduce page fault latency

○ Allows hugetlbfs 2M/1G pages to be mapped in smaller chunk, e.g. 4K

○ Merge small pages into huge pages when finished

○ Still not available yet

● Issue 5: High downtime switching from precopy to postcopy

○ Userfaultfd minor-mode (contributed by Google, merged v5.13 in 2021)

○ Allows dest VM runs earlier on stalled pages

○ No anonymous support, but support shmem/hugetlbfs

○ QEMU may need a new madvise() to zap pgtable but keep page caches

Example: Bitmap Copy
● What we measured (from QEMU)

○ Sync dirty bitmap took ~200ms for not-so-busy 3TB guest (~100MB bitmap)

● Reasons

○ Three layers of bitmap: kvm slot, ram_list.dirty_memory, migration

○ Different devices have standalone bitmaps: kvm, vhost, vfio, …

○ Copy bitmaps using xchg()/atomics for thread safety

● Need to look into

○ Merging/reducing bitmap layers/operations

○ Copy bitmaps more efficiently (next slide)

Bitmap Copy & Atomics
● Atomic ops are heavily used in dirty bitmap operations for thread-safety

● Atomic ops are not so cheap

○ Memory-bus lock required

● Compare xchg() v.s. normal memory copy (measured on i7-8665U)

○ All cache-hit in L1 (e.g. xchg() on single value): 8x slower

○ All cache-miss in L3 (e.g. xchg() a bitmap larger than L3 cache): 3x slower

(More data in next slide)

Bitmap Copy w/ xchg()
● Copy bitmap for 8TB memory (256MB bitmap):

[Test case: https://github.com/xzpeter/clibs/blob/master/bsd/bitmap.c]

CPU Model xchg() Memory copy Ratio

Intel(R) Core(TM) i7-8665U CPU
@ 1.90GHz 240ms 80ms 3x slower

Intel(R) Xeon(R) CPU E5-2630
v4 @ 2.20GHz 525ms 148ms 3.5x slower

https://github.com/xzpeter/clibs/blob/master/bsd/bitmap.c

Bitmap Copy - KVM Side
● KVM does not have such issue (at least not a major one)

○ With CLEAR_LOG, we do copy_to_user(bitmap) without xchg()

○ When re-protect, xchg() used, overhead buried in pgtable walks (?)

@@ -1804,14 +1804,19 @@ static int

kvm_get_dirty_log_protect()

 for (i = 0; i < n / sizeof(long); i++) {

- unsigned long mask;

+ unsigned long mask = dirty_bitmap[i];

 gfn_t offset;

- if (!dirty_bitmap[i])

+ if (!mask)

 continue;

 flush = true;

- mask = xchg(&dirty_bitmap[i], 0);

+ dirty_bitmap[i] = 0;

 dirty_bitmap_buffer[i] = mask;

 offset = i * BITS_PER_LONG;

@@ -1917,12 +1922,18 @@ static int kvm_clear_dirty_log_protect()

- unsigned long mask = *dirty_bitmap_buffer++;

- atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];

+ unsigned long mask = *dirty_bitmap_buffer++, tmp;

 if (!mask)

 continue;

- mask &= atomic_long_fetch_andnot(mask, p);

+ tmp = dirty_bitmap[i];

+ dirty_bitmap[i] &= ~mask;

+ mask &= tmp;

@@ -2968,8 +2979,21 @@ void mark_page_dirty_in_slot()

 if (kvm->dirty_ring_size)

kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),

 slot, rel_gfn);

- else

+ else {

+ lockdep_assert_held(&kvm->mmu_lock);

 set_bit_le(rel_gfn, memslot->dirty_bitmap);

+ }

 }

 }

 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);

(a) Set dirty

(b) Get dirty (without CLEAR)

(c) Clear dirty (with CLEAR)

Bitmap Copy - Summary
● QEMU may need a rework on copying/merging bitmaps

● Solution: rwlock + atomics?

○ When set dirty:

■ read_lock() + atomics (atomic ops avoid concurrent read races)

○ When collect/copy dirty

■ write_lock() + memcpy(): write lock avoids all races

● Rwlock read_lock()/write_lock() contain memory barriers by nature

● Need to verify and test

Comments welcomed, thanks!

