
VFIO-User
Remote Device Emulation using VFIO

John Johnson
Jag Raman
Elena Ufimtseva

Multi-process QEMU in 6.0

Device
Proxy

QEMU client

Guest

KVM

Custom Protocol

Device
Emulation

QEMU server

Existing VFIO

VFIO
Client Guest

KVMVFIO

ioctl()

Host device

VFIO-User

VFIO
Client

libvfio-user
library

QEMU client

Guest

KVM

Encapsulated VFIO

Device
Emulation

QEMU server

libvfio-user and friends

• QEMU Client and Server
– https://github.com/oracle/qemu.git

• libvfio-user library
– https://github.com/nutanix/libvfio-user.git
– C binding used by QEMU server and SPDK
– Other language bindings, such as RUST are possible
– Checkout update from Nutanix today

• SPDK
– https://github.com/spdk/spdk.git
– Intel already presented high-performance NVMe offload

https://github.com/oracle/qemu.git
https://github.com/nutanix/libvfio-user.git
https://github.com/spdk/spdk.git

VFIO-User vs. multi-process QEMU

• Uses established QEMU VFIO client instead
of a custom-made ‘proxy’ object
– Most of the code in the ioctl() implementation can

be re-used in the socket implementation
– Leverage existing VFIO features like IOMMU and

migration support
– No duplicated maintenance effort

• The protocol is changed to an encapsulation
of the ioctl() structures sent to the kernel
VFIO driver

VFIO-User vs. VFIO

• User space only - no kernel modifications
are needed
– It is VFIO-User, after all
– No kernel driver modifications
– No /sys or /dev/vfio files are used

• no privileged configuration changes needed

VFIO-User
QEMU clientEncapsulated VFIO

VFIO
Client

libvfio-user
library Guest

KVM

Device
Emulation

QEMU server

VFIO-User Client implementation

• We shared as much code as possible with
VFIO ioctl() implementation
– Defined new abstract super-class for both

types
– Biggest differences are in option parsing and

in setup/teardown of the device object
– Most others are low-level checks of whether to

issue an ioctl() or send a message over the
socket

VFIO-User Client implementation

• Use an iothread to receive packets from
server
– Incoming packets are classified as:

• replies that signal waiting CPU threads
• requests to be processed by the VFIO client

– All devices currently handled by single thread
but can easily be changed if scalability is an
issue

VFIO User Client implementation

• Do not want to hold BQL while blocking for
server replies
– Use per-socket mutex instead
– Have to be careful not to drop BQL when

messages are sent by address space change
transactions

• these transactions are serialized by BQL
• send messages async, then wait for all when

transaction commits

VFIO-User

VFIO
Client

libvfio-user
library

QEMU client

Guest

KVM

Encapsulated VFIO

Device
Emulation

QEMU server

VFIO User Server implementation

• Consists of the following major
components
– ‘x-remote’ machine
– pci-host bridge
– IOHUB
– Libvfio-user
– vfio-user object

QEMU Server Init
• Create vfu_ctx

– device handle
– named socket

• Register call-backs
– CONFIG
– BARx
– DMA map/unmap
– Migration

• Driven by QEMU
main-loop

VFIO User DMA

QEMULibvfio-user
API Guest

Guest Memory FDs

Device
Emulation

mmap()

VFIO-User servicing VM

• DMA Map / Unmap
– MemoryListener

notifies RAM
updates

– supports IOMMU
enabled guests

– send fd to allow
mapping guest
RAM in server

VFIO-User servicing VM …

• BARx access
– REGION_READ &

RRGION_WRITE
commands

– similar command for
CONFIG space
access

• Interrupts
– signal eventfd

QEMU Client Init
• VERSION command

– client proposes version
– server returns

compatible version
– server also returns the

capabilities it supports
• GET_INFO command

– gets device description
such as #regions, #IRQs

• GET_REGION_INFO
– description of region
– server can return fd for

memory mapping

QEMU Client Init …
• CONFIG_REGION_

READ
– read entire config

space from server;
shadow copy

• GET_IRQ_INFO
– returns #IRQ vectors

• SET_IRQ_INFO
– send IRQ info
– send eventfd to be

used with
KVM_IRQFD

VFIO User Interrupts

VFIO
Client

Libvfio-user
API

QEMU

Guest

KVM

EventFDs

Device
Emulation

interrupt injection

DMA_READ, DMA_WRITE commands

• Requests from server read from or write to
guest memory
– Used when guest memory is not backed by a

file descriptor
– Also used with ‘secure-dma’ command line

option
• indicates the client does not want the server to

directly access guest memory
• DMA_MAP never includes an FD if set

DIRTY_PAGES command

• Sent from client to server during migration
to retrieve a bitmap of pages dirtied by
DMA
– Server then clears the mask for the next

incremental request
• There also is an option to DMA_UNMAP

that asks for the dirty bitmap of the area
being unmapped

Performance numbers

Futures

• ioregionfd
• New socket types

– VSOCK? TCP?
• Non-PCI bus support

– ISA? USB?
• bdrv_inactivate_all()

Demo

