

VFIO-User

Remote Device Emulation using VFIO

John Johnson Jag Raman Elena Ufimtseva

Multi-process QEMU in 6.0

Existing VFIO

VFIO-User

libyfio-user and friends

- QEMU Client and Server
 - https://github.com/oracle/qemu.git
- libvfio-user library
 - https://github.com/nutanix/libvfio-user.git
 - C binding used by QEMU server and SPDK
 - Other language bindings, such as RUST are possible
 - Checkout update from Nutanix today
- SPDK
 - https://github.com/spdk/spdk.git
 - Intel already presented high-performance NVMe offload

VFIO-User vs. multi-process QEMU

- Uses established QEMU VFIO client instead of a custom-made 'proxy' object
 - Most of the code in the ioctl() implementation can be re-used in the socket implementation
 - Leverage existing VFIO features like IOMMU and migration support
 - No duplicated maintenance effort
- The protocol is changed to an encapsulation of the ioctl() structures sent to the kernel VFIO driver

VFIO-User vs. VFIO

- User space only no kernel modifications are needed
 - It is VFIO-User, after all
 - No kernel driver modifications
 - No /sys or /dev/vfio files are used
 - no privileged configuration changes needed

VFIO-User

VFIO-User Client implementation

- We shared as much code as possible with VFIO ioctl() implementation
 - Defined new abstract super-class for both types
 - Biggest differences are in option parsing and in setup/teardown of the device object
 - Most others are low-level checks of whether to issue an ioctl() or send a message over the socket

VFIO-User Client implementation

- Use an iothread to receive packets from server
 - Incoming packets are classified as:
 - replies that signal waiting CPU threads
 - requests to be processed by the VFIO client
 - All devices currently handled by single thread but can easily be changed if scalability is an issue

VFIO User Client implementation

- Do not want to hold BQL while blocking for server replies
 - Use per-socket mutex instead
 - Have to be careful not to drop BQL when messages are sent by address space change transactions
 - these transactions are serialized by BQL
 - send messages async, then wait for all when transaction commits

VFIO-User

VFIO User Server implementation

- Consists of the following major components
 - 'x-remote' machine
 - pci-host bridge
 - IOHUB
 - Libvfio-user
 - vfio-user object

QEMU Server Init

- Create vfu_ctx
 - device handle
 - named socket
- Register call-backs
 - CONFIG
 - BARx
 - DMA map/unmap
 - Migration
- Driven by QEMU main-loop

VFIO User DMA

VFIO-User servicing VM

- DMA Map / Unmap
 - MemoryListener notifies RAM updates
 - supports IOMMU enabled guests
 - send fd to allow mapping guest
 RAM in server

VFIO-User servicing VM ...

- BARx access
 - REGION_READ & RRGION_WRITE commands
 - similar command for CONFIG space access
- Interrupts
 - signal eventfd

QEMU Client Init

- VERSION command
 - client proposes version
 - server returns compatible version
 - server also returns the capabilities it supports
- GET_INFO command
 - gets device description such as #regions, #IRQs
- GET REGION INFO
 - description of region
 - server can return fd for memory mapping

QEMU Client Init ...

- CONFIG_REGION_ READ
 - read entire config space from server; shadow copy
- GET_IRQ_INFO
 - returns #IRQ vectors
- SET_IRQ_INFO
 - send IRQ info
 - send eventfd to be used with KVM IRQFD

VFIO User Interrupts

DMA_READ, DMA_WRITE commands

- Requests from server read from or write to guest memory
 - Used when guest memory is not backed by a file descriptor
 - Also used with 'secure-dma' command line option
 - indicates the client does not want the server to directly access guest memory
 - DMA_MAP never includes an FD if set

DIRTY PAGES command

- Sent from client to server during migration to retrieve a bitmap of pages dirtied by DMA
 - Server then clears the mask for the next incremental request
- There also is an option to DMA_UNMAP that asks for the dirty bitmap of the area being unmapped

Performance numbers

	IOPS		
	Standard QEMU	vfio-user QEMU	Perf delta
Random 4K Read	7155	7120	-0.49%
Random 4K Write	8854	9861	11.37%

Futures

- ioregionfd
- New socket types
 - VSOCK? TCP?
- Non-PCI bus support
 - ISA? USB?
- bdrv_inactivate_all()

Demo

