
Host & Guest Tracing in Virtualization:
"To sync, or not to sync?"

Stefano De Venuto
SUSE, Intern

Tzvetomir Stoyanov
VMware Open Source Technology Center

Who we are

Tzvetomir Stoyanov
Software engineer in the Open Source Technology Center,
VMware/Bulgaria working on the Linux Kernel tracing infrastructure.
• e-mail: tz.stoyanov@gmail.com
• github: https://github.com/tzstoyanov

Stefano De Venuto
Computer Science Student at University of Turin
Intern at SUSE
• e-mail: stefano.devenuto99@gmail.com
• github: https://github.com/stefanodevenuto/

Ftrace

● The official tracer of the Linux kernel

● Developed by Steven Rostedt more
than 10 years ago

● Part of the kernel, compiled by default
in most popular Linux distros.

● Allows you to look inside every corner
of a live running kernel.

Host-Guest kernel tracing

ftrace

Host

ftrace

Guest 1

trace-cmd agent

ftrace

Guest 2

trace-cmd agent

trace-cmd
trace.dat
trace-guest1.dat
trace-guest2.dat

➔ Fast transfer of huge tracing
data between guest and host

➔ Time stamps synchronisation

Challenges

Trace data transfer

Channel Throughput

FIFOs 1000 MB/s

vsockets 900 MB/s

TCP/IP sockets 275 MB/s

Measured on a laptop with Intel i5 CPU with 8 cores and and 16G RAM

Time stamps synchronisation - PTP

GuestHost Clock offset

 (T1' - T1 - T2' + T2) / 2

● round trip time is not symmetric
● no hardware timestamping

● Up to few hundred packets are
exchanged in one clock offset
measurement

● ftrace is used to get the packet times

T1’
T2

T1

T2’...

Time stamps synchronisation - KVM

/sys/kernel/debug/kvm:
● tsc-offset
● tsc-scaling-ratio
● tsc-scaling-ratio-frac-bits

guest_tsc = tsc-offset + (host_tsc * tsc-scaling-ratio) >> tsc-scaling-ratio-frac-bits

Tools & Libraries

● trace-cmd 2.9
● KernelShark 2.0
● trace libraries

○ librtaceevent
○ libtracefs
○ libtracecmd
○ libkshark

Verifying the results

● Given a combined (host + guest[s]) trace, how good did the merging and the

timestamp synchronization algorithm of choice work?

● Two different aspects:

○ event stream validation

○ timestamp synchronization accuracy evaluation

Validation: kvm_entry & kvm_exit events

Two crucial events:
● kvm_entry: marks when a CPU starts executing instructions from the guest

● kvm_exit: marks when the CPU stops executing instructions from the guest

What we expect:

● only guest events between a kvm_entry and the next kvm_exit
● no guest events between a kvm_exit and the next kvm_entry

Validation: what we expect?

Validation: what we expect?

Validation: what we expect?

Time-sync accuracy evaluation: an “event-based” approach

 G: XXX - guest event

 H: YYY - host event, consequence of XXX

 H: YYY - host event
 G: XXX - guest event, consequence of YYY

● Set(s) of consequential events:

○ event in the guest that causes one or more events on the host

○ event on the host that causes one or more events in the guest

● Reproducible and stable:

○ always the same events!

First set: hrtimer & MSR events

Programming a timer

● Baremetal
+ Write the timeout value in an MSR (for instance, IA32_TSC_DEADLINE MSR)
+ Will get an interrupt when timeout expires

● Virtual Machine
+ Write the timeout value in an MSR... Of course, it can’t be the host MSR directly!
+ VMExit with reason: msr_write
+ Host handles the exit (and the timer, and the real and emulated MSR write, etc)
+ … … ...

First set: hrtimer & MSR events

● High Resolution Timers:

When in TSC Deadline mode, they interact with the Deadline MSR

 # trace-cmd record -C x86-tsc -e msr:* -e kvm:* -e timer:* -A tumbleweed:823 -e timer:* -e msr:* sleep 1

 H: CPU 0/KVM-1977 [000] 2360.150329: kvm_entry: vcpu 0, rip 0xffffffffaa079246

 G: <idle>-0 [000] 2360.150331: hrtimer_start: hrtimer=0xffff90127dc21540 ...

 H: CPU 0/KVM-1977 [000] 2360.150333: kvm_exit: vcpu 0 reason MSR_WRITE ...

 H: CPU 0/KVM-1977 [000] 2360.150333: kvm_hv_timer_state: vcpu_id 0 hv_timer 1

 H: CPU 0/KVM-1977 [000] 2360.150333: kvm_msr: msr_write 6e0 = 0x61d24e6ecd4

 H: CPU 0/KVM-1977 [000] 2360.150333: kvm_entry: vcpu 0, rip 0xffffffffaa079246

 G: <idle>-0 [000] 2360.150334: write_msr: 6e0, value 61d24e6ecd4

Second set: idle task & HLT events

● Idle task:
Special task executed when there are no
other runnable tasks. Runs the idle loop.

● Idle loop:
Conceptually (and originally), a NOP busy
loop. Nowadays, optimized with idle
states (c states).

● Idle loop inside a VM:
(typicall) VMExit to the host, to let other
tasks/VMs run

Second set: idle task & HLT events

● idle=halt

● idle=poll

 G: <idle>-0 [000]11350708411803: cpu_idle: state=0 cpu_id=0

.

.

.
 H: CPU 0/KVM-1594 [000]11350713125170: kvm_exit: vcpu 0 reason INTR rip 0xffffffff9f8792b6 ...

 G: <idle>-0 [000]17183092310903: cpu_idle: state=1 cpu_id=0

 H: CPU 0/KVM-7361 [003]17183092315864: kvm_exit: vcpu 0 reason HLT rip 0xffffffffabda5e07 ...

 # trace-cmd record -C x86-tsc -e power:* -e kvm:* -A tumbleweed:823 -e power:* sleep 1

Infer information: we have sets, and then?

● We can use the timers and idle sets to measure the achieved time
synchronization accuracy

● For each set, subtract the timestamps of the events in it, in order to generate
many event deltas

● Compute the mean and the standard deviation of the event deltas found, which
combined will indicate the overall performance

Let’s automate it: final tool

● ./checker <host-file> <guest-file>... [-n event_name]... [-s samples-file]

● Multi vCPUs and multi guests

○ -n event_name: exclude event from validation process

○ -s filename: store all samples

● Implemented with libkshark, directly using the generated .dat files

● Might also be useful to re-think the placement of the tracepoints in the kernel.

Single guest
./checker trace.dat trace-tumbleweed.dat

./checker trace.dat trace-tumbleweed.dat -s <filename>

Multiple guests
./checker trace.dat trace-tumbleweed.dat trace-tumbleweed2.dat

PTP vs KVM: analysis

● Different scenarios

○ Idle system

○ Stressed system(s): stress-ng --matrix 0

● 30 sessions of tracing, 20 seconds long

○ ~8000 samples for timer sequence

○ ~3000 samples for idle sequences

No stress

Guest stress

Host stress

Both stress

PTP vs KVM: validation

KVMPTP

Algorithm

 0.136 %

 0.167 %

 0.191 %

 0.811 %

 0

 0

 0

 0
 Scenarios

Invalid guest events

No stress

Guest stress

Host stress

Both stress

No stress

Guest stress

Host stress

Both stress

 7.40 μs

 3.59 μs

 6.70 μs

 13.52 μs

 3.33 μs

 0.78 μs

 0.85 μs

 1.28 μs

PTP vs KVM: evaluation

PTP

KVM

 4.36 μs

 0.65 μs

 7.45 μs

 1.66 μs

 1.14 μs

 0.16 μs

 0.15 μs

 0.38 μs

 Standard Deviation Mean

Timer events Halt events

 4.43 μs

 N/A

 4.50 μs

 N/A

 2.40 μs

 N/A

 0.67 μs

 N/A

 2.71 μs

 N/A

 1.91 μs

 N/A

 0.59 μs

 N/A

 0.16 μs

 N/A

 Standard Deviation Mean

PTP vs KVM: not a fair battle...

● Performance

PTP vs KVM: not a fair battle...

● Stability
KVM PTP

Conclusion

● Host-Guest tracing is possible, if we can synchronize the traces

● trace-cmd supports multiple synchronization mechanisms:

PTP KVM

Complex to implement

Not accurate enough

Hypervisor agnostic

Very simple implementation

Very accurate

Relies on debugfs entries

Conclusion

● KVM relies on debugfs entries

○ stable enough ABI?

○ what if debugfs is compiled out (for security reasons)?

● Feedback wanted: how else can we read the (per-vCPU) tsc-offset, tsc-scaling-ratio,

etc values:

○ a new system call ?

○ … ?

Links & Acknowledgments

● Links

○ trace-cmd.org

○ kernelshark.org

○ Sync evaluation tool

● Acknowledgments

○ Yordan Karadzhov (VMware) <y.karadz@gmail.com>

○ Steven Rostedt (VMware) <rostedt@goodmis.org>

○ Dario Faggioli (SUSE) <dfaggioli@suse.com>

https://trace-cmd.org/
https://www.kernelshark.org/
https://github.com/stefanodevenuto/kernel-shark/blob/checker/examples/checker.c

Thanks for your attention!

