
HCK-CI: Enabling CI for Windows guest

paravirtualized drivers

Kostiantyn Kostiuk - Software engineer, Daynix

https://github.com/HCK-CI

Agenda

• virtio-win drivers

• Why do we need CI for virtio-win drivers?

• What is WHQL certification and what are HCK\HLK?

• How we can leverage WHQL certification for CI?

• What are the challenges with WHQL certification?

• Automating WHQL certification

• Examples of configuration and usage

2

• Upstream: https://github.com/virtio-win/kvm-guest-

drivers-windows/

• Drivers for the major virtio devices:

• virtio-net

• virtio-blk, virtio-scsi

• virtio-balloon, virtio-serial, virtio-vsock, virtio-input,

virtio-rng

• virtio-gpu

VirtIO-Win 3

https://github.com/virtio-win/kvm-guest-drivers-windows/

• Enable easy upstream

contribution

• We want PRs to pass

WHQL certification tests

for each driver category

• Not easy to setup and

execute

Why do we need CI for virtio-win? 4

• Microsoft driver certification

• HLK and HCK are the test kits used for

certifications

What are WHQL and HLK\HCK? 5

Test clients

Controller Device
Under
Test

Support
Device

VM types 6

Certification overview

Device certification

Networking

Storage

USB

Other categories

System certification

(SVVP for hypervisors)

7

Different kits

HCK

Windows 7

Windows 8

Windows 8.1

Windows Server 2008R2

Windows Server 2012

Windows Server 2012R2

HLK1607

Windows 10, Windows Server 2016

HLK

HLK1809

Windows 10, Windows Server 2019

HLK2022

Windows Server 2022

8

Sample configuration - network

control bridge

Device Under Test
VM

Controller VM

Support Device
VM

test bridge

world connection

9

Controller VM

Sample configuration - other devices

control bridge

DUT VM

world connection

10

• Run certification tests as part of CI process

• Can be used by individual developer

• The ultimate goal - to be used for actual

certification

What do we need? 11

• Used by individual developer

• Orchestrates network and storage for the test

• Runs VMs on top of QEMU-KVM

History: VirtHCK 12

What should be automated?

Host Automation: VM and networking

orchestration

Guest communication layer

Guest automation

Test manager and reports

13

AutoHCK - architecture

Result uploadersSetup managers

Engines

Guest communication

layers

Auxiliary

14

• Driver installation (including test certificate)

• HCK\HLK studio control using MS API

– Orchestration of HCK\HLK setup

– Running tests

• Filter and playlist application

• Get back the results in a parsed human
readable manner and test package

Guest automation - toolsHCK 15

⮚ createpool “NetKVM-pool”

⮚ createproject “NetKVM-Win2022x64”

⮚ createprojecttarget

“PCI\VEN_1AF4&DEV_1000&SUBSYS_00011AF4&REV_

00\3&267A616A&0&20” “NetKVM-Win2022x64” “CL2”

“NetKVM-pool”

toolsHCK - examples 16

⮚ queuetest “bbcc1b46-d0bf-46c8-85b4-2cd62df34a20”
“PCI\VEN_1AF4&DEV_1000&SUBSYS_00011AF4&REV_0
0\3&267A616A&0&20” “NetKVM-Win2022x64” “CL2”
“NetKVM-pool”

⮚ listtestresults “bbcc1b46-d0bf-46c8-85b4-2cd62df34a20”
“PCI\VEN_1AF4&DEV_1000&SUBSYS_00011AF4&REV_0
0\3&267A616A&0&20” “NetKVM-Win2022x64” “CL2”
“NetKVM-pool”

⮚ createprojectpackage “NetKVM-Win2022x64” [<package>]

toolsHCK - examples 17

• Communication between Controller VM and the

test manager on the host using WinRM

• Communication between the Controller and Client

VMs

• A gateway to toolsHCK

Guest communication layer - rtoolsHCK 18

• Creates VMs images with corresponding software

• Orchestrates network and storage for the test

• Creates snapshots that will be used for the tests

• Runs VMs and monitors their status

Host automation – AutoHCK 19

• Manages test configurations

• Platforms, OSes, devices, HLK / custom test play

lists, test black lists, HLK filter

• Orchestrates test setup in HLK studio and run the

tests

• Monitors test process

Test Manager - AutoHCK 20

• Result uploading

– uploading results to DropBox

• Parsed HLK\HCK results

• Mini-dump files, if BSOD occurred during the
tests’ run

• Symbol and binary files for debugging

– updates Github pull requests with CI status

• HLK test package

Report Manager - AutoHCK 21

Installation

Server requirements

Processor 12 x vCPUs (minimal)

Memory 14 GB RAM (minimal)

Storage 512 GB (SSD is preferred)

Host OS Linux based

Internet connection Recommended

22

• Project source:

– AutoHCK

– toolsHCK

– HLK-Setup-Scripts

– extra-software

Installation 23

https://github.com/HCK-CI/AutoHCK
https://github.com/HCK-CI/toolsHCK
https://github.com/HCK-CI/HLK-Setup-Scripts
https://github.com/HCK-CI/extra-software

Configuration

• JSON – Format

• Global configuration

• Setup managers

• Engines

24

Configuration

• Global configuration

– config.json

– drivers.json

– svvp.json

{

"iso_path": "/home/hck-ci/HCK-CI/iso",

"extra_software": "/home/hck-ci/HCK-CI/extra-software",

"workspace_path": "/home/hck-ci/HCK-CI/workspace",

"ip_segment": "192.168.0.",

"id_range": [2, 90],

"winrm_port": "5985",

"repository": "virtio-win/kvm-guest-drivers-windows",

"toolshck_path": "./toolsHCK.ps1",

"studio_username": "Administrator",

"studio_password": "*******",

"result_uploaders": ["dropbox"],

"test_engine": "hcktest",

"install_engine": "hckinstall",

"setupmanager": "qemuhck",

"time_out": "9"

}

25

https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/config.json
https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/drivers.json
https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/svvp.json

Configuration

• Setup managers

– qemu_machine.json

– physhck.json

[

{

"name": "PhyWin2016",

"st_ip": "10.20.30.40",

"kit": "HLK1607"

},

{

"name": "PhyWin2019",

"st_ip": "10.20.30.41",

"kit": "HLK1809"

}

]

26

https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/lib/setupmanagers/qemuhck/qemu_machine.json
https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/lib/setupmanagers/physhck/physhck.json

Configuration

• Engines

– hlkinstall.json

• HLK Install

– studio_platform.json

– kit.json

– iso.json

• HLK Test

– <platform>.json

{

"name": "Win2022x64",

"kit": "HLK2022",

"st_image": "HLK2022.qcow2",

"clients": {

"c1": {

"name": "CL1",

"cpus": "4",

"memory": "4G",

"winrm_port": "4002",

"image": "HLK2022-C1-Win2022x64.qcow2"

},

"c2": {

"name": "CL2",

"cpus": "4",

"memory": "4G",

"winrm_port": "4003",

"image": "HLK2022-C2-Win2022x64.qcow2"

}

}

}

27

https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/lib/engines/hckinstall/hckinstall.json
https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/lib/engines/hckinstall/studio_platform.json
https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/lib/engines/hckinstall/kit.json
https://github.com/HCK-CI/AutoHCK/blob/55c94a54b12bae7e085b6ebd81d855ae5feb1254/lib/engines/hckinstall/iso.json
https://github.com/HCK-CI/AutoHCK/tree/55c94a54b12bae7e085b6ebd81d855ae5feb1254/lib/engines/hcktest/platforms

Optional software - Jenkins 28

Optional software - Sentry 29

Image installation

ruby ./bin/auto_hck install -p Win10_2004x86

30

Running sample test

ruby ./bin/auto_hck test \

--platform Win2019x64 --drivers ivshmem \

--driver-path "${HOME}/workspace/ivshmem-Win2019x64-build"

31

Running sample test 32

Running sample test 33

Projects using HCK-CI

virtio-win CI OpenVPN CI

34

Current Status

• Running as upstream CI for several projects

• Modular architecture allowing adding support for other
hypervisors or bare metal support (vDPA on Windows)

• Support for automating SVVP (hypervisor) certification tests

• Integration with GitHub (modularity allowing integration with
other services)

• Integration with DropBox to upload the results

• Parsing the results so they can be viewed by people without
installation of HLK\HCK Studio

35

Future

• Adding support for other hypervisors

• Adding support for additional results’ storage

36

konstantin@daynix.com

Links – source code

• HCK-CI Framework source:

– https://github.com/HCK-CI/AutoHCK

– https://github.com/HCK-CI/toolsHCK

– https://github.com/HCK-CI/HLK-Setup-Scripts

– https://github.com/HCK-CI/extra-software
• virtio-win drivers source code (upstream CI):

– https://github.com/virtio-win/kvm-guest-drivers-windows
• OpenVPN TAP-Windows driver source code (upstream CI):

– https://github.com/OpenVPN/tap-windows6

38

https://github.com/HCK-CI/AutoHCK
https://github.com/HCK-CI/toolsHCK
https://github.com/HCK-CI/HLK-Setup-Scripts
https://github.com/HCK-CI/extra-software
https://github.com/virtio-win/kvm-guest-drivers-windows
https://github.com/OpenVPN/tap-windows6

Links – related information

• Windows Unattended Setup:

– https://docs.microsoft.com/en-us/windows-
hardware/manufacture/desktop/automate-windows-setup

– https://docs.microsoft.com/en-us/windows-
hardware/manufacture/desktop/update-windows-settings-
and-scripts-create-your-own-answer-file-sxs

• HLK Test Reference

– https://docs.microsoft.com/en-us/windows-

hardware/test/hlk/testref/hardware-lab-kit-test-reference

39

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/automate-windows-setup
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/update-windows-settings-and-scripts-create-your-own-answer-file-sxs
https://docs.microsoft.com/en-us/windows-hardware/test/hlk/testref/hardware-lab-kit-test-reference

Links – related presentations

• KVM Forum 2012 WHQL Process for Windows Drivers and What the Community Can
Learn From It - Yan Vugenfirer, Daynix :

– https://www.linux-kvm.org/images/8/82/2012-forum-WHQLAndTheCommunity.pdf

• HLK Test Reference

– https://www.slideshare.net/YanVugenfirer/virt-hck-kvmforum2013

40

