
Don’t Peek Into my Container!

Christophe de Dinechin, Red Hat

Alice Frosi, Red Hat

Sergio López Pascual, Red Hat

Agenda

2

Today’s Topics

▸ Confidential computing

▸ Confidential workloads with k8s and libkrun

▸ SEV-enabled libkrun

▸ From Kata Containers to Confidential Containers

Confidential computing

“Confidential Computing is the protection of data in use by performing computation in a
hardware-based Trusted Execution Environment”

https://confidentialcomputing.io/whitepaper-02-latest/

3

https://confidentialcomputing.io/whitepaper-02-latest/

Confidential workloads vs Confidential containers

4

Confidential workloads are transformed

containerized workloads into a special form

that can be deployed with libkrun and

confidential computing technologies

Confidential containers are the deployment

of a regular containers with an OCI runtime (e.g

Kata Containers) and confidential computing

technologies

Confidential
workload

crun + libkrun

Confidential container

OCI runtime

Regular
container

Confidential workloads vs Confidential containers

5

Confidential workloads

▸ Confidentiality at container level

▸ Single container per encrypted VM

▸ Deploy a special form of container image

with a single layer

▸ Simpler architecture and reusing the

existing k8s infrastructure

Confidential containers

▸ Confidentiality at pod level

▸ Multiple containers per encrypted VM

▸ Use encrypted layered container images

▸ Part of the infrastructure is moved inside

the trusted environment (e.g image

offloading)

Confidential workloads
with k8s and libkrun

D
on’t P

eek Into M
y C

ontainer!

6

Kubernetes Architecture

7

crun

libkrun libcrun

CRI interface

OCI interface

Receive the pod information

Schedule the workload on a node

Pull the container image on the node

Prepare the bundle with the rootfs of the

container

Create the config.json with the container

information

Create and run the container

apiVersion: v1
kind: Pod
metadata:
 name: pod-krun-sev
 annotations:
 libkrun.attestation: "http-attest"
 run.oci.handler: "krun-sev"
spec:
 containers:
 - image: encrypted/nginx-tls
 name: krun-sev
 command: [“/fake-entrypoint”]
 ports:
 - containerPort: 443
 nodeSelector:
 sev: "true"

Attestation

8

libkrun

config.json

http-attest

encrypted workload

coordinator

Secret
(Kernel cmdline)

“annotations":
 “libkrun.attestation”: "http-attest"

session (build+cert chain)

session-uid+crypto params

measurement

Encrypted VM

Inject secret and boot

Kernel cmdline:
LUKs passphrase,

process, env variables, params ...

Trusted build server

Encrypted image

9

Registry

Encrypted image

encrypted.img

fake-entrypoint

Push encrypted image

Untrusted environment

Pull encrypted image

/var/run/crio/…./merged

Encrypted image

encrypted.img
fake-entrypoint

libkrun

Regular container image

Transform in confidential
workload

SEV-enabled libkrun for
Confidential Workloads

D
on’t P

eek Into M
y C

ontainer!

10

SEV-enabled libkrun

The need for a Minimal Firmware (I)

11

Guest Memory

Initial Page Tables

libkrun (VMM)

e820

MP table

Kernel Image

initramfs

Original functionality

These tables are
written by the VMM
and become part of

the launch
measurement!

Linux Zero Page

SEV-enabled libkrun

The need for a Minimal Firmware (II)

12

 Guest Memory

libkrun (VMM)

Kernel Image

initramfs

SEV-enabled functionality

These tables are
written by the

Firmware and are
NOT part of the

launch measurement!

Minimal FW

Initial Page Tables

e820

MP table

Linux Zero Page

Before starting the VM After starting the VM

SEV-enabled libkrun

Replacing virtio-fs with virtio-blk (I)

13

Guest

Kernel

Host

crun+libkrun

Image expanded into a
directory on the Host

Regular libkrun
with virtio-fs

Guest

Kernel

Host

crun+libkrun

Pre-encrypted Image

SEV-enabled
libkrun with

virtio-blk

SEV-enabled libkrun

Replacing virtio-fs with virtio-blk (II)

14

▸ libkrun uses virtio-fs because fits nicely with the container isolation use case.

▸ But, for the Confidential Workloads use case, virtio-fs is not the best solution.

･ Even if we could find an acceptable filesystem-level encryption mechanism, the

implementation will leak too much information.

･ The implementation is quite large and complex (is, by far, the largest component in

libkrun) compared with virtio-blk, and requires a large number of syscalls, which implies a

more permissive seccomp filter.

･ Lines of Code: virtio-fs = 7444, virtio-blk = 1325

SEV-enabled libkrun

Replacing virtio-fs with virtio-blk (III)

15

▸ Using virtio-blk allows us to easily rely on LUKS.

･ LUSK2 has the ability to combine dm-crypt and dm-integrity.

･ Provides both confidentiality and integrity protection (Authenticated Encryption with

Additional Data, AEAD).

･ Protects against all known attacks, except data replay, which would require specialized

hardware storage.

･ Reference: Practical Cryptographic Data Integrity Protection with Full Disk Encryption

Extended Version by Milan Brož, Mikuláš Patočka and Vashek Matyáš.

https://arxiv.org/pdf/1807.00309.pdf
https://arxiv.org/pdf/1807.00309.pdf

SEV-enabled libkrun

The need for an initramfs

16

▸ The binary we use in libkrun to set up the environment inside the guest is bundled in the

integrated virtio-fs server.

･ Without virtio-fs, we needed an alternative.

▸ We’ve incorporated a simple initramfs.

･ Includes a variant of the binary to set up the environment, a static version of cryptsetup,

and some support directories and device nodes.

･ For SEV-SNP and TDX cases, it’ll likely include a small attestation client.

･ Opens the LUKS device (using the injected secret) and continues doing the usual

environment adjustments before executing the workload entry point.

SEV-enabled libkrun

The Big Picture

17

Guest

LUKS-based root filesystem

Kernel Image initramfsMinimal FW

 Host

crun+libkrun Pre-encrypted imageCRI-O

kubelet

Host’s kernel

Part of the launch
measurement, attested

by the CWC

Pre-encrypted and
authenticated (AEAD)

Trusted

Untrusted

Workload entry point and data

From Kata containers to
Confidential containers

D
on’t P

eek Into M
y C

ontainer!

18

The ecosystem of containers
The sandboxing of virtualization

Runtime (runc)

▸ Run Containers described the usual way (e.g. same yaml file, images, storage, networking…)

▸ … in Virtual Machines with their own independent kernel and very little user space

Basic Architecture: From Kata Containers to Confidential Containers

19

Kata Containers overview

Container

Container

VMM (e.g. qemu)

CRI (cri-o or containerd)

Runtime (kata-shim)

Kata agent

CSICNI

Volumes

Images

CRI: Container Runtime Interface
CNI: Container Networking Interface
CSI: Container Storage Interface

kubelet

APIs

Regular containers Kata containers

Problem statement:
Can we trust the host?

20

C
onfidential C

ontainers

▸ Containers run on a host, often managed by a third party, like a cloud provider

▸ Sandboxing goes only one way, protecting the host from containers, not the other way round

▸ Resources belong to the host, which owns them and has free access

Problem Statement: Can we trust your host?

21

Host

Container Container Container Container

Containers are carved out of the host resources

What do you need to do if
you start considering the
host as hostile?

▸ Data exposure of information held in the container is possible

▸ Multiple tenants may not want to share the same host because of confidentiality risk

▸ Legal concerns may preclude the use of containers if you cannot guarantee confidentiality

Problem Statement: Can we trust your host?

22

Host

Container Container Container Container

There is a potential for unwanted data leaks

Data leaving the container Leak between containers Leak outside of host

Enabling technology:
Confidential Computing

C
onfidential C

ontainers

23

Tenant
controlled
attestation

service“My data” Container

▸ Memory encryption prevents the host from getting data out of guest memory

▸ Integrity protection offers guarantees about guest state corruption

▸ Attestation lets the guest owner (tenant) validate what runs in the guest

Enabling technology: Confidential Computing

24

Confidential Computing: more than encryption…

My Secret

@A?2=KVz\

RAX=37
RCX=21

RAX=DD
RCX=00

OK to run?

0wn-nginx

nginx

Data is undecipherable State can’t be corrupted Only valid images can run

Enabling technology: Confidential Computing

25

Many vendor-specific technologies

▸ AMD offers Secure Encrypted Virtualization (SEV)

･ SEV-ES adds Encrypted State (e.g. CPU register file)

･ SEV-SNP adds Secure Nested Pages (integrity protection for memory and more)

▸ Intel offers Trusted Domain Extensions (TDX)

▸ IBM S390 offers Secure Execution (SE)

▸ Power offers Protected Execution Facility (PEF)

▸ Arm announced Confidential Computing Architecture (CCA)

▸ All these technologies are based on virtualization

▸ Each of these technologies works in a slightly1 different way. There be zombies

1 For a slightly understated definition of “slightly”

Relevant Trust Realms
Trusted Platform: Offers confidentiality guarantees
using hardware-level cryptographic enforcement.

Host: Offers and manages the resources used to run the
container (CPU, memory, I/O, etc)

Tenancy: Confidential area carved out of the host, but
not visible nor accessible to it.

Runtime (runc)

Container

Container

VMM (e.g. qemu)

CRI (cri-o or containerd)

kata-shim-v2

Kata agent

CSICNI

Kubernetes, Kubelet, Podman, etc

Linux Kernel and KVM Firmware

Basic Architecture: From Kata Containers to Confidential Containers

26

Separate Trust Realms: Platform, Tenant and Host

Encrypted
Volumes

Encrypted
Images

🔑

🔑

Relying Party

Key broker Attestation
Services

🔑🔑🔑

The Kata development is done for most platforms

Basic Architecture: From Kata Containers to Confidential Containers

27

Enabling Confidential Computing for Kata Pods

Container

VMM with CC

CRI (cri-o or containerd)

kata-shim-v2 with CC

Kata agent

CSICNI

Volumes

Images

Impacted components:

Kata runtime: Pass right options to VMM

VMM: Enable encryption, etc, when setting up VM

Kernel: Low-level hardware support, e.g. SEV, TDX

Firmware: Special services, e.g. page validation

Hardware: Encryption in memory controller

Kubernetes, Kubelet, Podman, etc

Linux Kernel and KVM Firmware

Kata Containers Confidential Containers

Container

VMM (e.g. qemu)

Kata agent

▸ Pull Image from inside the guest instead of pulling it from the host

▸ Store Images on an encrypted volume, where only guest has decryption keys

Basic Architecture: From Kata Containers to Confidential Containers

28

Securing Image Download

Container

CRI (cri-o or containerd)

kata-shim-v2

Kata agent

CSICNI

kubelet

PullImage

Encrypted
Volumes

Encrypted
Images

The Kubelet delegates the PullImage
operation to the ImageService in the CRI.

Today, that API does not exist between CRI
and kata-shim-v2, since container images
are currently pulled on the host.

This API situation is relatively typical of the
sort of issues we run into for this project.

Also, for initial prototyping, the key has to be
pulled out of some magic hat.

VMM with CC

🔑

Pass PullImage API to guest

Attestation: Knowing exactly what runs

Kata agent

Guest kernel

Guest firmware

Image Service

keyprovider

Attestation process

Confidential VM

CRI-O / containerd

kata-shim-v2 Attestation
Agent

kubelet

umoci

skopeo

Optional

Relying Party

Container
Image

Registry

Attestation
Service

Key Broker
Service (KBS)

❓Quote

VMM (e.g. qemu)

ocicrypt

Ephemeral
Block Device

Container
Image

(Pod Scope)
🔑

Boot
image

Restricted API over vsock

📐Measure

Container
Image

🔑

✅Authorize

🔑Get key

Planned for September-November 2021

▸ Hot Plugging is currently used to add memory, CPU or devices to the pod

･ The Pod APIs do not give us the information about container sizes

･ Resources are dynamically added at container creation time

･ This adds a lot of complexity to the runtime, and inefficiency (e.g. fat page tables)

▸ Integrity is hard to guarantee if you can change the configuration at runtime

･ Memory hot-plugging or ballooning mechanisms conflict with encryption / validation

･ Devices, notably pass-through PCI devices with DMA, are also problematic

▸ Immutable Pods are fully defined ahead of time, before booting the virtual machine

･ This requires many changes in the existing Kubernetes APIs

･ Existing APIs may put things “in the wrong place”, e.g. send logs to the host.

･ This will simplify and optimize the non-confidential case, e.g. remove hot-plugging

Integrity protection: From hot-plugging to immutable pods

30

How do you configure your virtual machine?

▸ Tenants need their own isolated administrative realm (logs, container metrics, …)

▸ Hosts manage physical resources (pod creation/destruction, raw disks, H/W metrics…)

Integrity protection: From hot-plugging to immutable pods

31

The need for a shadow control plane

Confidential VM

initrd

kernel

kata-agent

VMM

kubelet

CRIO
containerd

kata-shim-v3

kubelet

CRIO
containerd

kata-shim-v3

Host user with host
credentials

No vsock

Tenant user with
tenant credentials

Secure
(networked)
RPC channeletcd

Create Pod with complete description
(not piecewise)

All APIs except pod lifetime (create, kill) go
through confidential channel

etcd

🔑

ContainerContainerContainer

Will take a couple of

years at least

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

32

