
Ben Walker

Changpeng Liu

3 Re-use of NVMe library

NVMe client library

1 QEMU and libvfio-user

Standardization

2 Re-use of NVMe-oF target

Emulating NVMe devices

2

4
Performance

vfio-user NVMe vs. vhost-user block

3

1
libvfio-user: Status Update - Thanos Makatos & John Levon, Nutanix
Thursday, September 16 • 15:35 - 16:00

2
Live Migrating VFIO, vhost-user, and vfio-user Devices - Stefan
Hajnoczi, Red Hat
Thursday, September 16 • 14:35 - 15:00

4

https://kvmforum2021.sched.com/
https://kvmforum2021.sched.com/?iframe=yes&w=100%25&sidebar=yes&bg=no

5

Need to emulate device outside

VMM

Performance

Security

Stability/resilience

Device can even run in separate VM

Initially conceived for SPDK

NVMe device emulation

But much broader than this

use case now!

6

• Modelled after VFIO ioctls (similar
commands/structs)

1. VFIO commands/structs do exactly
what we need

• Similar to vhost-user but not
specific to virtio

• VMM agnostic protocol (not tied to
QEMU)

• Commands/messages passed over
UNIX domain socket

• Currently under review at qemu-
devel

• “introduce vfio-user protocol
specification”

• https://github.com/nutanix/libvfio-
user/blob/master/docs/vfio-user.rst

7

8

NVMe-oF already requires nearly full emulation of an NVMe
device

NVMe-oF already has a pluggable transport layer

9

Let’s make a new transport for NVMe-oF

A “shared memory” or “virtualization”
transport

But fabrics *is* slightly different than PCIe.
Some of the initialization flow is reversed.

• Can we generalize the transport plugin interface to
handle this?

• Yes!

SPDK NVMe-oF Target

vfio-user tcp rdma

SPDK NVMe-oF Target

Emulated NVMe Controller

TCP VFIOUSER

Namespaces

BDEV

NVMe-BDEV User defined
BDEV

QEMU

VM

nvme driver

vfio-pci

libvfio-user

PCIe Fabric

ioctl user

11

• Need to “listen” on a Unix domain socket

• Only a single “host” can connect to the subsystem, rather than many

• No need to have an accept poller

The “listener” concept is different for vfio-user

• Push accept poller down into the transports. The vfio-user transport
just won’t make one.

Need to generalize concept of listener to
“endpoint” in SPDK

12

Register reads and writes
are very different for PCIe

than fabrics

• MMIO rather than
commands with requests
and responses

• The set of allowed
registers is different

Libvfio-user provides a file
descriptor that is signaled
when an MMIO operation

has occurred

• Create a background
thread blocked on that
fd

• Generate a fake fabrics
property get/set
command and send to
target. For MMIO read,
block until response.

Expand set of allowed
Fabrics Property Get/Set

commands

• Wider range of registers
allowed for PCIe

13

Admin queue creation happens in

reversed order compared to real

fabrics devices

Real fabrics devices first create an admin queue,

then read registers

PCIe devices first read registers, then create an

admin queue

Need to create an admin queue as

soon as “endpoint” is created so

registers can be read

Generate fake admin queue creation command

in transport, send to target

14

• Final patch that went into SPDK contained *only* a new transport.

• No other code changes!

• Generalization is useful for future additional transports we expect to see

• Running the NVMe-oF target as firmware?

• QUIC?

• SPDK is a great NVMe emulator

• Can leverage this to prototype new NVMe features and test from QEMU

15

16

▪ SPDK NVMe library can connect with SPDK
NVMe-oF Target via vfio-user-pci client
library

▪ vfio-user-pci provides abstracts of PCI access
via socket messages SPDK NVMe-oF Target

vfio-user tcp

SPDK NVMe Driver

vfio-usertcp

vfio-user-pci libvfio-user

17

▪ Vhost target poller will process IOs in unit of each vhost
controller, for multiple IO queues in each controller, all
IO queues are processed in the same core context.

▪ NVMe-oF target poller will process IOs in unit of
submission queue of each NVMe controller, for multiple
IO queues, submission queues can be processed in
different core context.

NULL block devices are used to evaluate the
IO processing between VMs and vhost/NVMe-
oF target, which means no actual IOs reads from the
backend device.

System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100. VM configuration : 16 vcpus 16GB
memory, 16 IO queues; VM OS: Fedora 33, kernel 5.10.8-200, blk-mq enabled; Software: QEMU with vfio-user-pci patch, IO distribution: SPDK, FIO 3.21, io depth=128, numjobs=16, direct=1, block size=4k,randread,total tested data
size=400GiB

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4

number of cores

IOPS(K)

0

200

400

600

800

1000

1200

1 core

vfio-user NVMe

vhost-user blk

Chart 1: Core scaling for vfio-user NVMe
4VMs

Chart 2: vfio-user NVMe VS. vhost-user BLK
1 VM

System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100. VM configuration : 4 vcpus 8GB memory,
4 IO queues; VM OS: Fedora 33, kernel 5.10.8-200, blk-mq enabled; Software: QEMU with vfio-user-pci patch, IO distribution: SPDK, FIO 3.21, io depth=128, numjobs=4, direct=1, block size=4k,randread,total tested data size=400GiB

▪ Chart 1: for the purpose to demo core scaling,
total IOPS of 4 VMs increases from
903K,1750K,3500K when using 1,2,4 cores in
SPDK.

▪ Chart 2: for the purpose to compare with vhost-
user BLK, vfio-user NVMe gets 984K IOPS while
vhost-user BLK gets 1002K IOPS when using 1
core in SPDK and 4 IO queues in VM.

IOPS(K)

NULL BDEVs are used, running FIO
inside VM

System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Intel P5800X 1.6TB, fw: L0310100; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100. VM
configuration : 4 vcpus 8GB memory, 4 IO queues; VM OS: Fedora 33, kernel 5.10.8-200, blk-mq enabled; Software: QEMU with vfio-user-pci patch, IO distribution: SPDK, FIO 3.21, io depth=128, numjobs=4, direct=1, block
size=4k,randread,total tested data size=400GiB

▪ Running SPDK NVMe perf tool(QD=128, 4 IO queues
using 4 cores) to evaluate the physical NVMe
SSD(Intel Optane P5800X, 1.6TB) performance
number at first as the base number and gets 860K
IOPS.

▪ Running SPDK NVMe perf tool(same as the above for
the workload) inside VM to evaluate the emulated
NVMe SSD performance and gets 853K IOPS, we
almost can’t see the virtualization overhead for this
test case.

▪ Running FIO inside the VM, vfio-user NVMe gets
725K IOPS and vhost-user BLK gets 786K IOPS, vfio-
user NVMe can reach about 84% of the physical
NVMe base performance number while vhost-user
BLK can reach about 91%.

0

100

200

300

400

500

600

700

800

900

IOPS(K)

vfio-user NVMe vhost-user BLK

SPDK perf NVMe(VM) SPDK perf NVMe(Host)

21

