
Securing the Hypervisor

with Control-Flow Integrity
Daniele Buono

IBM Research

Special Thanks

• Team @ IBM Research:

• Hubertus Franke

• James Bottomley

• Tobin Feldman-Fitzthum

• Dov Murik

• James Cadden

• Marcio A Silva

• Carlo Bertolli

• QEMU Community

• Paolo Bonzini

• Philippe Mathieu-Daudé

• Daniel P. Berrangé

• Stefan Hajnoczi

• Wainer dos Santos Moschetta

Outline

• Why Control-Flow Integrity

• Implementing Control-Flow Integrity
– Stack Protection

– Function Pointers Protection

• Status of the patches

• What did we accomplish?

• Future Work

Why Control-Flow Integrity

QEMU, as every other computer program, is subject to bugs

Year
of

Vulnerabilities
DoS Code Execution Overflow

Memory

Corruption

Directory

Traversal

Bypass

something

Gain

Information
Gain Privileges

2007 4 1 2

2008 5 1 1

2009 1 1

2010 1 1 1 1

2012 7 3 1 2 1 3

2013 4 2 1 2 1

2014 36 17 27 24 4 2 2

2015 11 8 6 7 1 1 1

2016 91 65 10 17 2 1 8

2017 65 55 6 12 1 1 2

2018 38 12 6 10 1

2019 17 3 4 3 1

2020 46 16 6 12 1 1

2021 25 13 6 6 1 2

Total 351 196 76 98 9 2 4 15 9

% Of All 55.8 21.7 27.9 2.6 0.6 1.1 4.3 2.6

Vulnerability Trends Over Time1

1 data gathered from www.cvedetails.com

Integrity Attacks:
Get access to:
• Provider

infrastructure
• Other Clients

• Data
• VM

https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2007/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2007/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2007/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2008/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2008/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2008/opginf-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2009/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2009/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2010/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2010/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2010/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2010/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2012/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2012/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2012/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2012/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2012/opbyp-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2012/opgpriv-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2013/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2013/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2013/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2013/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2013/opgpriv-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2014/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2014/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2014/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2014/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2014/opmemc-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2014/opginf-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2014/opgpriv-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2015/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2015/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2015/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2015/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2015/opmemc-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2015/opginf-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2015/opgpriv-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2016/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2016/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2016/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2016/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2016/opmemc-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2016/opdirt-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2016/opginf-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2017/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2017/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2017/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2017/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2017/opmemc-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2017/opginf-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2017/opgpriv-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2018/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2018/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2018/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2018/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2018/opmemc-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2019/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2019/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2019/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2019/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2019/opbyp-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2020/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2020/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2020/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2020/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2020/opdirt-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2020/opbyp-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2021/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2021/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2021/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2021/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2021/opbyp-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/year-2021/opginf-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/opdos-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/opec-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/opov-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/opmemc-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/opdirt-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/opbyp-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/opginf-1/Qemu-Qemu.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7506/product_id-12657/opgpriv-1/Qemu-Qemu.html

Why Control-Flow Integrity

Typical Techniques for Integrity Attacks:

• ROP Gadgets
– With a buffer overflow, an attacker can

overwrite the stack to call a sequence of ROP
Gadgets (ROP Chain)

• Indirect Function Call Hijacking:
– Modify function pointers in data structures, to

change the behavior of the program

– Very effective in C++ code (Virtual Functions)
or C code with callbacks

– Usually, insert calls to libc that translate into
syscalls (mmap, mprotect, system, …)

Ret Addr 1

Data

Ret Addr 2

Data

Ret Addr 3

Instruction
Sequence

ret

Stack
Gadgets

Instruction
Sequence

ret
Instruction
Sequence

ret

obj.callback(void *) f (void *)

int system(const char *command)

int system(const char *command);

Why Control-Flow Integrity

How effective are vulnerabilities in QEMU, anyway?

1 data gathered from www.cvedetails.com

Data from 2017:

Vulnerabilities with a CVSS score

• >= 4: 79 (41%)

• >= 7: 14 (4%)

But surely, an attack with code execution

scores at least “high”, right?

Why Control-Flow Integrity

Surely, an attack with code execution scores at least “high”
• Turns out, understanding the impact of a vulnerability is not that easy

– CVE-2019-14378:
ip_reass in ip_input.c in libslirp 4.0.0 has a heap-based buffer overflow via a large packet because it mishandles a case
involving the first fragment.

CVSS Score 6.5

Confidentiality Impact Partial (There is considerable informational disclosure.)

Integrity Impact Partial (Modification of some system files or information is possible, but the attacker does not have
control over what can be modified, or the scope of what the attacker can affect is limited.)

Availability Impact Partial (There is reduced performance or interruptions in resource availability.)

Access Complexity Low (Specialized access conditions or extenuating circumstances do not exist. Very little knowledge
or skill is required to exploit.)

Gained Access None

Why Control-Flow Integrity

Surely, an attack with code execution scores at least “high”
• Turns out, understanding the impact of a vulnerability is not that easy

– CVE-2019-14378: https://vishnudevtj.github.io/notes/qemu-vm-escape-cve-2019-14378

• Bug in packet fragment reassembling. Can write to an offset from an allocated packet.

• Spray Heap by sending a fragmented packet with no end fragment, gain control of the heap

• Sending specific sequence of fragmented packets, get arbitrary write

• Use ICMP echo request to read memory, bypass ASLR and PIE. Find beginning of code section and data.

• Overwrite QEMUTimerList pointer to custom-made callback list

• Call System()

• Similar attack with CVE-2019-6778 (CVSS 4.6): https://github.com/0xKira/qemu-vm-escape

https://vishnudevtj.github.io/notes/qemu-vm-escape-cve-2019-14378
https://github.com/0xKira/qemu-vm-escape

Why Control-Flow Integrity

Surely, an attack with code execution scores at least “high”
• Turns out, understanding the impact of a vulnerability is not that easy

– Attacks can use multiple vulnerabilities to obtain a larger effect.

– CVE-2015-5165 and CVE-2015-7504

CVE-2015-5165 CVE-2015-7504

CVSS Score 5.0 CVSS Score 4.6

Confidentiality
Impact

Partial (There is considerable informational disclosure.)
Confidentiality

Impact
Partial (There is considerable informational disclosure.)

Integrity
Impact

None (There is no impact to the integrity of the system)
Integrity
Impact

Partial (Modification of some system files or information is possible,
but the attacker does not have control over what can be modified,
or the scope of what the attacker can affect is limited.)

Availability
Impact

None (There is no impact to the availability of the system.)
Availability

Impact
Partial (There is reduced performance or interruptions in resource
availability.)

Gained Access None Gained Access None

Why Control-Flow Integrity

Surely, an attack with code execution scores at least “high”
• Turns out, understanding the impact of a vulnerability is not that easy

– Attacks can use multiple vulnerabilities to obtain a larger effect.

– CVE-2015-5165 and CVE-2015-7504: http://www.phrack.org/papers/vm-escape-qemu-case-study.html

• Use CVE-2015-5165 to read memory that was previously used for setup objects in QEMU – memory freed but

not cleared.

• Find a specific object with a function pointer

• Use such pointer to compute known function and data addresses

• Use CVE-2015-7504 to change virtual irq function pointer to mprotect: make guest mem executable on host

• Use CVE-2015-7504 again to change virtual irq function pointer to the executable guest memory

• Run arbitrary code on the host. Example: a shell with stdin and stdout inside the VM

http://www.phrack.org/papers/vm-escape-qemu-case-study.html

Why Control-Flow Integrity

Surely, an attack with code execution scores at least “high”
• Turns out, understanding the impact of a vulnerability is not that easy

• It should be assumed that any buffer overflow (no matter the CVSS score)

can result in an arbitrary memory write and compromise the host.

• Buffer overflow on the Stack can also be used for ROP attacks – however

QEMU allocates most structures on heap so Stack Overflows are less likely.

• CVEs since 2015: 5% stack-based buffer overflow1, 31% buffer overflow2

1 CVEs with "stack" in the description. 2CVEs with "buffer overflow" and "out-of-bounds" in the description.

Why Control-Flow Integrity

QEMU, as every other computer program, is subject to bugs
• Solutions?

– Remove bugs!
• Updating QEMU means stopping the VM – Hurting Availability

• Only affect known bugs.

– Avoid bugs by using “safe” languages?
• Safe languages only help avoiding some types

• Impractical on 2.5+ Millions of lines of code

• Needs a total rewrite – other projects are pursuing that: Firecracker, Cloud Hypervisor…

– Reduce effectiveness of bugs
• Seccomp, SELinux, AppArmor, cgroups, namespaces, etc.

– Usually end up with a “loose protection”, in order to cover all the types of behavior QEMU have.

• Control Flow Integrity

– Inside QEMU’s binary, have better chances to stop unwanted behaviors

Implementing Control-Flow Integrity

• Google’s Chromium and Android are the gold standard for
advanced security features in C/C++ code
– Approach: add advanced, research-based features in the compiler

• Generic: can be used with “little” effort on multiple projects

– Compiler of choice: Clang/LLVM
• Backward-Edge Control Flow Integrity (ShadowCallStack, SafeStack)

• Forward-Edge Control-Flow Integrity (icall CFI)

• Hardened Memory Allocator (SCUDO) – Statistically Identify buffer
overflows

• Undefined Behavior checks – Integer overflow, Array out of Boundary, etc.

• Compiler Based? We can use the same features in QEMU!
– With “small” changes, and lots of testing

Protecting the Stack – Shadow Stack

The standard protection against Stack Smashing
• Idea: Keep a copy of all the return pointers somewhere else

– At every call, push return address to Shadow Stack

– At every return, pop address from Shadow Stack and check

– Can be implemented at Software or in Hardware

• Caveats:
– Software version insecure in some architectures

• Race conditions, a thread can change return address before
push/after check

• Additional instructions on call/ret reduce performance

– Hardware versions such as CET fix most issues
• Avoid Race condition, value is saved while executing call, and checked while executing ret

• Can protect memory effectively, since shadow stack is only accessed by call/ret instructions

Ret Addr 1

Data

Ret Addr 2

Data

Ret Addr 3

Ret Addr 1

Ret Addr 2

Ret Addr 3

Stack Shadow
Stack

Protecting the Stack – SafeStack

SafeStack is an alternative protection to stack smashing
• Idea: Instead of copying the return pointer into a shadow position,

– Let’s make sure that a buffer
overflow cannot overwrite
a return pointer!

• How:
– The stack is split in “Safe”

and “Unsafe” stack.

– “Safe” stack only contains
data accessed with fixed-length
operations

– Everything that may cause a
buffer overflow, is stored
in the “Unsafe” Stack

Ret Addr

VAR

BUFFER

VAR

Ret Addr

VAR

VAR

Ret Addr

BUFFER

Original
Stack

Ret Addr

VAR

VAR

Ret Addr

VAR

Ret Addr

BUFFER

VAR

BUFFER

Safe
Stack

Unsafe
Stack

Shadow Stack vs SafeStack

• SafeStack is safer and faster than software-based Shadow Stacks
– Safety:

• No race conditions that can void protection

– Performance:
• No need to add instructions around call/ret

• Only need an additional register to store the unsafe stack pointer (Shadow Stack also need a
register for second stack pointer)

• There will be caching differences (data that was contiguous in a normal stack, may not be with
SafeStack), which may hurt performance in highly optimized stacks.

• SafeStack should be comparable to hardware-based Shadow Stacks
– Safety:

• No race conditions that can void protection in both cases

• However, some hardware-based shadow stacks (CET) can protect the shadow stack memory

– Performance:
• Since SafeStack has almost no overhead, performance should be comparable (if not better) to

CET, which requires the execution of more complex instructions in place of call/ret

Implementing SafeStack in QEMU

• Add a flag, and you’re good to go…in most cases

– QEMU makes heavy use of coroutine1 (mostly block layer)
• Coroutines in QEMU are implemented using ucontext or sigaltstack, which are

not supported by SafeStack

• Each coroutine carries its own state – including stack
– With SafeStack, we should:

1. Create both safe and unsafe stack

2. On a coroutine switch, both safe and unsafe stack need to be updated.

• Updated ucontext-based implementation to support SafeStack
– ucontext library is used only to “set-up” a co-routine

» Create new context <- Allocate unsafe stack too

» Swap to context first time <- Update unsafe stack pointer before context swap

– Then, sigsetjmp/siglongjmp are used to switch between coroutines

» These are automatically supported by SafeStack and did not need additional changes

1Coroutines can be seen as lightweight, cooperative threads

Protecting Function Pointers

Forward-edge Control-Flow Integrity
• Idea: Check that the function pointed is “allowed”

– Theory: Call Graph can be used for exact matching

– Practice: Call Graph is impracticable; use approximations
• Intel CET IBT/Microsoft CFG: every function in the binary that could be used as an indirect call is allowed

• Clang icall/Microsoft XFG: every function in the binary that has the correct signature is allowed

• How:
– Ordered Jump Tables (Clang icall)

• Pointers allowed only to jump tables

• If pointer is within the correct interval, pass check

– Signature Hashes (Clang icall/Microsoft XFG)
• Compute hash of signature, store somewhere safe (.text)

• If hash of function is correct, pass check

– Add special instruction at beginning of function (Intel CET IBT)
• Hardware will make sure that such instruction is encountered after executing call

• Signature checking clearly works at a finer grain

icall CFI implemented by Clang/LLVM

Ordered Jump Tables: checking signatures
in constant time
• For every function, create a “shadow function”

– The shadow function only contains a hardcoded jump
to the real function

– Shadow functions are ordered by signature type

– Compiler makes sure that the shadow function is used
when assigning function pointers

• Now, at call time, signature can be checked by
making sure the pointer is in the memory area
containing the right shadow functions

– 0-3: void (int*, char*)

– 4-5: void (int*)

z f1.cfi

f3.cfi

f4.cfi

f6.cfi

f2.cfi

f5.cfi

f1

f2

f3

void (int*)

void (int*, char*)

f4

f6

f5

0

1

2

3

4

5

Implementing icall CFI in QEMU

Is QEMU respecting function signatures,

i.e. no weird type casting happening under the hood?

– Yes… But

• Several cases where registered callbacks have different pointer types:

– Callback pointer is a void (int*), callback type is void (char*)

– Clang offers a useful option to consider all pointers equal (pointer

generalization)

• void (int*) == void (char*))

Implementing icall CFI in QEMU

• Again, add a flag, and you’re good to go…in most cases

– QEMU has several “sensitive points”, where icall CFI has issues,
because the function called does not have a shadow function:

• Anything that uses JIT compilation, where the compiled binary is allocated
in memory at run-time

• Anything that uses a callback that is coming from outside of the binary (i.e.
shared libraries)

– In particular, we have issues with:
• TCG: Disable CFI when calling Translation Blocks

• TCI: Disable CFI when interpreting instructions

• Plugins: Disable CFI for plugin callbacks

• Modules: Block CFI at compile time if modules are enabled

• QEMU Signal Handler1:Disable CFI for the signal handler call

1QEMU can call the installed signal handler directly in some cases

Implementing icall CFI in QEMU

Bonus side effect:

• icall CFI requires the use of Link-Time Optimization (LTO), to

create and reorder shadow functions for the entire binary at

once (not per-object file)

– Tested and added support for LTO in QEMU, using Meson

Status of patches

• Both SafeStack and CFI icall patches are upstream

• Reduced CI case running in gitlab to check against bit rot
– LTO significantly increase compile time and memory requirements for compilation.

• Shared gitlab runners only allow limited testing

• Features can be used today, with some caveats
– Requires Clang.

• Most distributions use GCC, have to compile your own QEMU

– Icall CFI does not work with modules
• Some distribution (i.e. RHEL) are moving towards a modular build, which will

limit its adoption in current form

Did we accomplish something?

CVEs since 2015: 5% stack-based buffer overflow1, 31% buffer overflow2

Mitigated Approximately 35% of known CVEs3, + Zero-Day Vulnerabilities

1CVEs with "stack" in the description. 2CVEs with "buffer overflow" and "out-of-bounds" in the description.
3CVEs with “stack”, "buffer overflow" and "out-of-bounds" in the description.

What’s next?

• Support for CFI in shared libraries
– Necessary for:

• Enabling CFI with modules

• Enabling CFI with shared library version of slirp

• Problem:
– Jump Tables, and address windows, are computed on the binary

– A shared library, even if instrumented with CFI, will have its own jump table and the address window
for the same signature will be disjoint from the main binary.

• Solution:

– Clang implements Cross-DSO CFI
• If “local” CFI fails, take slower path to check CFI in external DSO

– If external library was instrumented, call is protected

– If external library was not instrumented, call is not protected <- Changes in LLVM

• Additional performance penalty if “local” CFI fails <- Shouldn’t happen often

• Not compatible with pointer generalization <- Changes in QEMU

• Experimental implementation with performance and correctness issues in dlopen

– Would need implementation in libc or libdl for production <- Changes in libc

