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Background & Motivation



Background

• RISC-V’s current approach to virtual interrupt is based on trap-n-emulate.

• Three types: timer, software-generated, external

• The virtual timer interrupt flow on current KVM architecture:
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Background

• The virtual supervisor software-generated interrupt (VSSI) flow on current KVM architecture:
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Background

• The virtual supervisor external interrupt (VSEI) flow on current KVM architecture:
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Background

• The flow of acknowledging VSEI on current KVM architecture:
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Motivation

• Trap-n-emulate introduces a number of traps for all three types of virtual interrupt.

• Performance critical workloads will suffer from frequent traps thus lost CPU cycles.

• Existing virtualization technology on other architectures such as x86 and ARM already introduced some 

kind of interrupt pass-through mechanism, such as Posted Interrupt and ITS

• What about RISC-V?



Overview



Overview

 We designed a virtualization-aware interrupt controller for RISC-V

 We implemented KVM support for the virtualization-aware interrupt controller

 Background: existing RISC-V interrupt controller:
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Virtualization-aware Core-Local Interrupt Controller (CLINT)

Interrupt Name Type Mode Purpose

Timer stimecmp CSR HS-mode The clock event source for HS-mode

vstimecmp CSR VS-mode The clock event source for VS-mode

stimecmp Alias VS-mode Alias of vstimecmp

Software sgenipi CSR HS-mode Write generates HS-mode SGIs

vsgenipi CSR HS-mode Write generates VS-mode SGIs

sgenipi Alias VS-mode Alias of vsgenipi

vshartid CSR VS-mode the identifier of the vCPU running on a hart

shartid Alias VS-mode Alias of vshartid

External ugenvsei CSR U-mode Write generates VS-mode VSEIs

vsclaim CSR HS-mode For guest to claim the pending VSEIs

sclaim Alias VS-mode Alias of vsclaim
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Virtualization-aware PLIC

• Virtualization-aware PLIC

> The goal: minimize vCPU thread contention during vCPU 

scheduling

• New registers

> vhsimap: holds the base address to the virtual interrupt table

> vtblbase[n]: holds the base address to the virtual interrupt affinity 

table of the VM to which the vCPU on the hart n belongs.

> ifmap[n]: holds the VMID and the vCPU ID of the vCPU on the hart 

n.

> vdipending[n]: MMIO register, holds the pending VSEIs for a guest
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Direct Injection of Virtual Interrupts

• The hart is modified so that the CLINT can directly set the pending bits for the virtual interrupt

• When the virtual interrupt becoming pending when V==0, the hart still takes it and the hypervisor 

handles the interrupt, which later injects this interrupt to a vCPU.
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Direct Injection of Virtual Interrupts

• There are some challenges posed by the existing CSRs in the H-extension

• For virtual timer interrupt, we managed with only hip.VSTIP

> The hypervisor doesn’t really ‘claim’ a virtual timer interrupt because it is level-triggered.

> We do need to separate the enable bits, vsie.STIE is no longer an alias of hie.VSTIE.

• For VSSI, the separation is needed.

> The vsip.SSIP bit indicates whether there is a VSSI pending for V==1.

> The PLIC always sets hip.VSSIP. When the hart is in V==1, it converts hip.VSSIP to vsip.SSIP, the guest 

subsequently receives an SSI

> When V==0, the host receives an VSSI.

> vsie.SSIE bit enables / disables VSSI when V==1

• For VSEI, when V==0, the host receives an notification interrupt, it then injects a SEI to the guest.



KVM Support Overview

• Handle virtual interrupts when V==0, saving them for injection

• Maintain a consistent interrupt context for each vCPU across all possible context switches.
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Trap-less Virtual Interrupt



Trap-less Virtual Interrupt – Timer Interrupt

• Setting the timer

> The guest writes to vstimecmp via the alias stimecmp to set the timer

> The host writes directly to vstimecmp to switch the vCPU context

• Interrupt delivery

> In running state, V==1, hip.VSTIP is set, the guest handles it directly.

> In paused state, V==0, hip.VSTIP is set, the host handles it, e.g. to allow priority adjustment for scheduling.

> In scheduled off state, the host tracks the vCPU’s timer using hrtimer, no timer virtual interrupt is fired.

Running Paused
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off

…
case IRQ_VSTIMER:

csr_write (hie, VSTIE);

kvm_riscv_cpu_inject (IRQ_VS_TIMER);
…



Trap-less Virtual Interrupt – Virtual Timer Interrupt

• vCPU context maintenance

Running Paused
Scheduled 

off

vsie = csr_read(CSR_VSIE);

…
csr_clear (hie, VSTIE);

vstimecmp = csr_read (CSR_VSTIMECMP);

csr_write (CSR_VSTIMECMP, -1);

start_hrtimer (vcpu, vstimecmp);

csr_set (hie, VSTIE);
…

…
cancel_hrtimer (vcpu);

csr_clear (hie, VSTIE);

csr_write (CSR_VSTIMECMP, vstimecmp);

csr_write (CSR_VSIE, vsie);
…



Trap-less Virtual Interrupt – Virtual Timer Interrupt

• The virtual timer interrupt flow with the new controller

• Bypasses the entire host when the vCPU is in running state

• Comparable to the existing approach when vCPU is not running
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Trap-less Virtual Interrupt – VSSI

• Sending VSSI

> A guest vCPU writes to sgenipi to send a VSSI to another vCPU in the same VM, specifying the vCPU ID.

• Routing VSSI

> The PLIC looks up in ifmap[n] registers whether there is one that contains the specified vCPU ID

> If found, deliver the VSSI to the hart with mhartid value n. The vCPU can be in either running state or paused state.

- If running, take the interrupt directly by guest.

- If paused, host takes the interrupt and injects it to the vCPU

> If not found, deliver a notification interrupt to any host hart for injection. The vCPU must be in scheduled off state.



Trap-less Virtual Interrupt – VSSI

• Interrupt handling and vCPU context maintenance by host

Running Paused
Scheduled 

off

vsip = csr_read (CSR_VSIP); csr_write (CSR_SIFMAP, -1);

csr_write (CSR_SIFMAP, vmid | vcpuid);csr_write (CSR_VSIP, vsip);

…
case IRQ_VS_SOFT:

csr_clear (CSR_HIP, VSSIP);

kvm_riscv_inject_ssi ();
…

…
kvm_riscv_inject_ssi (vmid, vcpuid);

write (claim); // signal EOI
…

VSSI Notification Interrupt



Trap-less Virtual Interrupt – VSSI

• The virtual software-generated interrupt flow with the new controller
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Trap-less Virtual Interrupt – VSEI

• VM Creation

> The host allocates memory for pending bits for the VM

• Sending VSEI

> Backend driver in the host’s user space writes to ugenvsei CSR to send an external device interrupt to the guest

• Delivering VSEI

> The PLIC looks up the virtual interrupt affinity tables pointed to by the vtblbase[n] registers and find the vCPU that 

this virtual interrupt should be delivered to.

> The PLIC looks up in ifmap[n] registers whether there is one that contains the specified vCPU ID

> If found, deliver the VSEI to hart with mhartid n. The vCPU can be in either running state or paused state.

- If running, take the interrupt directly by guest.

- If paused, host takes the interrupt and injects an SEI to the vCPU

> If not found, deliver an notification interrupt to any host hart for injection. The vCPU must be in scheduled off state.

• VSEI Claim and EOI

> The guest directly read from and write to the vsclaim register to claim and signal end-of-interrupt during handling of 

the VSEI.



Trap-less Virtual Interrupt – VSEI

• Interrupt handling and vCPU context maintenance
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// do_IRQ()
switch(irq) {

…
case IRQ_VSEI:

kvm_riscv_cpu_inject (IRQ_SEI);
…

}

Save hip
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…
kvm_riscv_vm_inject (vmid, IRQ_SEI);
…



Trap-less Virtual Interrupt – VSEI

• The VSEI sending flow with the new controller
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Trap-less Virtual Interrupt – VSEI

• The VSEI claim flow with the new controller

PLIC

VS-mode

Hardware

VM Kernel

CLINTvdipending[x]

vclaim
vhartid

Ifmap[x]

Pending 

bits



Implementation & Results



Implementation

• We have implemented the above interrupt extension in RISC-V QEMU v5, which provides an emulated 

RISC-V environment with the hypervisor extension.

• We have implemented necessary KVM support.

• We ran benchmarks that can be compiled and ran in the emulator with reasonable effort, and obtained 

some performance figures.

> We managed to compile and run Redis and UnixBench



Benchmark Results – Virtual Timer Interrupts

• Performance is compared to mtimecmp-based timer

• Similar results are observed for UnixBench
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Benchmark Results – Timer & VSSI

• Performance is compared to mtimecmp-based timer and the original SBI-based IPI
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Benchmark Results – VSEI

• We ping the virtual machine 100,000 times

• Ping latency is reduced 11% on average

• Traps due to MMIO are reduced by ~300,000 times, as expected.



Future Work

• Pass-through device interrupts: need IOMMU

• More design details need to be iron out

> Priority controls, secure virtual interrupts etc.

• Integration with future RISC-V interrupt controllers

• Validate the design on more hypervisors
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