
Design, Implementation and Challenges

Siqi Zhao <zhaosiqi3@huawei.com>

Trap-less Virtual Interrupt for KVM on RISC-V



Contents

 Background and Motivation

 Overview

 Virtualization-aware Interrupt Controller

 Direct Injection of Virtual Interrupts

 KVM Support

 Trap-less Virtual Interrupt

 Timer Interrupt

 Software-Generated Interrupt (SGI)

 Virtual Device Interrupt

 Implementation & Results

 Future Work



Background & Motivation



Background

• RISC-V’s current approach to virtual interrupt is based on trap-n-emulate.

• Three types: timer, software-generated, external

• The virtual timer interrupt flow on current KVM architecture:

VM Kernel KVM

hrtimer

riscv-timer

mtimecmp

OpenSBI

VS-mode HS-mode

M-mode

Hardware (CLINT)
Set timer

Timer interrupt



Background

• The virtual supervisor software-generated interrupt (VSSI) flow on current KVM architecture:

VM 

Kernel
KVM

PLIC

OpenSBI

VS-mode
HS-mode

M-mode

Hardware

OpenSBI

KVM
VM 

Kernel

Hart 1 Hart 2

VSSI

SSI of host



Background

• The virtual supervisor external interrupt (VSEI) flow on current KVM architecture:

KVM

PLIC

OpenSBI

VS-modeHS-mode

M-mode

Hardware

OpenSBI

KVM VM Kernel

Hart 1 Hart 2

Qemu device

virtio

Emulated PLIC

U-mode

VSEI

Host SSI



Background

• The flow of acknowledging VSEI on current KVM architecture:

VS-modeHS-mode Linux / KVM

Emulated PLICU-mode

VM Kernel



Motivation

• Trap-n-emulate introduces a number of traps for all three types of virtual interrupt.

• Performance critical workloads will suffer from frequent traps thus lost CPU cycles.

• Existing virtualization technology on other architectures such as x86 and ARM already introduced some 

kind of interrupt pass-through mechanism, such as Posted Interrupt and ITS

• What about RISC-V?



Overview



Overview

 We designed a virtualization-aware interrupt controller for RISC-V

 We implemented KVM support for the virtualization-aware interrupt controller

 Background: existing RISC-V interrupt controller:

hart
CLINT

PLIC

mtimecmp

Pending bits

Priority control

Enabling control

hart
CLINT

mtimecmp



Virtualization-aware Core-Local Interrupt Controller (CLINT)

Interrupt Name Type Mode Purpose

Timer stimecmp CSR HS-mode The clock event source for HS-mode

vstimecmp CSR VS-mode The clock event source for VS-mode

stimecmp Alias VS-mode Alias of vstimecmp

Software sgenipi CSR HS-mode Write generates HS-mode SGIs

vsgenipi CSR HS-mode Write generates VS-mode SGIs

sgenipi Alias VS-mode Alias of vsgenipi

vshartid CSR VS-mode the identifier of the vCPU running on a hart

shartid Alias VS-mode Alias of vshartid

External ugenvsei CSR U-mode Write generates VS-mode VSEIs

vsclaim CSR HS-mode For guest to claim the pending VSEIs

sclaim Alias VS-mode Alias of vsclaim

CLINT
stimecmp

vstimecmp

sgenipi

vsgenipi

vshartid

ugenvsei

vsclaim

stimecmp

sgenipi

shartid

sclaim

New CSRs

New aliases



Virtualization-aware PLIC

• Virtualization-aware PLIC

> The goal: minimize vCPU thread contention during vCPU 

scheduling

• New registers

> vhsimap: holds the base address to the virtual interrupt table

> vtblbase[n]: holds the base address to the virtual interrupt affinity 

table of the VM to which the vCPU on the hart n belongs.

> ifmap[n]: holds the VMID and the vCPU ID of the vCPU on the hart 

n.

> vdipending[n]: MMIO register, holds the pending VSEIs for a guest

PLIC

vdipending0

vdipending1

vdipendingn

…

vhsimap

vtblbase0

vtblbase1

vtblbasen

…

VMID vInt ID

Virtual Interrupt Table

pInt ID Interface ID

Virtual Interrupt Affinity Table 1

RAM

pInt ID Interface ID

Virtual Interrupt Affinity Table 2

ifmap0

ifmap1

ifmapn

…

Pending bits

Pending Bits for Virtual Interrupt



Direct Injection of Virtual Interrupts

• The hart is modified so that the CLINT can directly set the pending bits for the virtual interrupt

• When the virtual interrupt becoming pending when V==0, the hart still takes it and the hypervisor 

handles the interrupt, which later injects this interrupt to a vCPU.

none

Guest 

pending

Guest 

handling

Host 

pending

Host 

handling

V==1

V==0



Direct Injection of Virtual Interrupts

• There are some challenges posed by the existing CSRs in the H-extension

• For virtual timer interrupt, we managed with only hip.VSTIP

> The hypervisor doesn’t really ‘claim’ a virtual timer interrupt because it is level-triggered.

> We do need to separate the enable bits, vsie.STIE is no longer an alias of hie.VSTIE.

• For VSSI, the separation is needed.

> The vsip.SSIP bit indicates whether there is a VSSI pending for V==1.

> The PLIC always sets hip.VSSIP. When the hart is in V==1, it converts hip.VSSIP to vsip.SSIP, the guest 

subsequently receives an SSI

> When V==0, the host receives an VSSI.

> vsie.SSIE bit enables / disables VSSI when V==1

• For VSEI, when V==0, the host receives an notification interrupt, it then injects a SEI to the guest.



KVM Support Overview

• Handle virtual interrupts when V==0, saving them for injection

• Maintain a consistent interrupt context for each vCPU across all possible context switches.

Running Paused
Scheduled 

off

traps kvm_vcpu_put()

kvm_vcpu_load()sret

Virtual Interrupt

V==0V==1

Virtual Interrupt



Trap-less Virtual Interrupt



Trap-less Virtual Interrupt – Timer Interrupt

• Setting the timer

> The guest writes to vstimecmp via the alias stimecmp to set the timer

> The host writes directly to vstimecmp to switch the vCPU context

• Interrupt delivery

> In running state, V==1, hip.VSTIP is set, the guest handles it directly.

> In paused state, V==0, hip.VSTIP is set, the host handles it, e.g. to allow priority adjustment for scheduling.

> In scheduled off state, the host tracks the vCPU’s timer using hrtimer, no timer virtual interrupt is fired.

Running Paused
Scheduled 

off

…
case IRQ_VSTIMER:

csr_write (hie, VSTIE);

kvm_riscv_cpu_inject (IRQ_VS_TIMER);
…



Trap-less Virtual Interrupt – Virtual Timer Interrupt

• vCPU context maintenance

Running Paused
Scheduled 

off

vsie = csr_read(CSR_VSIE);

…
csr_clear (hie, VSTIE);

vstimecmp = csr_read (CSR_VSTIMECMP);

csr_write (CSR_VSTIMECMP, -1);

start_hrtimer (vcpu, vstimecmp);

csr_set (hie, VSTIE);
…

…
cancel_hrtimer (vcpu);

csr_clear (hie, VSTIE);

csr_write (CSR_VSTIMECMP, vstimecmp);

csr_write (CSR_VSIE, vsie);
…



Trap-less Virtual Interrupt – Virtual Timer Interrupt

• The virtual timer interrupt flow with the new controller

• Bypasses the entire host when the vCPU is in running state

• Comparable to the existing approach when vCPU is not running

VM Kernel KVM

hrtimer

riscv-timer

stimecmp

VS-mode HS-mode

Hardware (CLINT)
Set timer

Timer interrupt
vstimecmp

Running

Paused
Scheduled 

off



Trap-less Virtual Interrupt – VSSI

• Sending VSSI

> A guest vCPU writes to sgenipi to send a VSSI to another vCPU in the same VM, specifying the vCPU ID.

• Routing VSSI

> The PLIC looks up in ifmap[n] registers whether there is one that contains the specified vCPU ID

> If found, deliver the VSSI to the hart with mhartid value n. The vCPU can be in either running state or paused state.

- If running, take the interrupt directly by guest.

- If paused, host takes the interrupt and injects it to the vCPU

> If not found, deliver a notification interrupt to any host hart for injection. The vCPU must be in scheduled off state.



Trap-less Virtual Interrupt – VSSI

• Interrupt handling and vCPU context maintenance by host

Running Paused
Scheduled 

off

vsip = csr_read (CSR_VSIP); csr_write (CSR_SIFMAP, -1);

csr_write (CSR_SIFMAP, vmid | vcpuid);csr_write (CSR_VSIP, vsip);

…
case IRQ_VS_SOFT:

csr_clear (CSR_HIP, VSSIP);

kvm_riscv_inject_ssi ();
…

…
kvm_riscv_inject_ssi (vmid, vcpuid);

write (claim); // signal EOI
…

VSSI Notification Interrupt



Trap-less Virtual Interrupt – VSSI

• The virtual software-generated interrupt flow with the new controller

VM 

Kernel

PLIC

VS-mode

Hardware

KVM
VM 

Kernel

Hart 1 Hart 2

VSGIifmap[2]

Running

paused

Scheduled 

off



Trap-less Virtual Interrupt – VSEI

• VM Creation

> The host allocates memory for pending bits for the VM

• Sending VSEI

> Backend driver in the host’s user space writes to ugenvsei CSR to send an external device interrupt to the guest

• Delivering VSEI

> The PLIC looks up the virtual interrupt affinity tables pointed to by the vtblbase[n] registers and find the vCPU that 

this virtual interrupt should be delivered to.

> The PLIC looks up in ifmap[n] registers whether there is one that contains the specified vCPU ID

> If found, deliver the VSEI to hart with mhartid n. The vCPU can be in either running state or paused state.

- If running, take the interrupt directly by guest.

- If paused, host takes the interrupt and injects an SEI to the vCPU

> If not found, deliver an notification interrupt to any host hart for injection. The vCPU must be in scheduled off state.

• VSEI Claim and EOI

> The guest directly read from and write to the vsclaim register to claim and signal end-of-interrupt during handling of 

the VSEI.



Trap-less Virtual Interrupt – VSEI

• Interrupt handling and vCPU context maintenance

Running Paused
Scheduled 

off

…

Restore vdipendingSync up and restore hip

VSEI

// do_IRQ()
switch(irq) {

…
case IRQ_VSEI:

kvm_riscv_cpu_inject (IRQ_SEI);
…

}

Save hip

Notification Interrupt

…
kvm_riscv_vm_inject (vmid, IRQ_SEI);
…



Trap-less Virtual Interrupt – VSEI

• The VSEI sending flow with the new controller

PLIC

VS-mode

Hardware

KVM VM Kernel

Hart 1 Hart 2

Qemu device

virtioHU-mode

paused

Scheduled 

off Running



Trap-less Virtual Interrupt – VSEI

• The VSEI claim flow with the new controller

PLIC

VS-mode

Hardware

VM Kernel

CLINTvdipending[x]

vclaim
vhartid

Ifmap[x]

Pending 

bits



Implementation & Results



Implementation

• We have implemented the above interrupt extension in RISC-V QEMU v5, which provides an emulated 

RISC-V environment with the hypervisor extension.

• We have implemented necessary KVM support.

• We ran benchmarks that can be compiled and ran in the emulator with reasonable effort, and obtained 

some performance figures.

> We managed to compile and run Redis and UnixBench



Benchmark Results – Virtual Timer Interrupts

• Performance is compared to mtimecmp-based timer

• Similar results are observed for UnixBench

0%

10%

20%

30%

40%

50%

60%

70%

80%

Redis w/ vstimecmp, 1 vCPU



Benchmark Results – Timer & VSSI

• Performance is compared to mtimecmp-based timer and the original SBI-based IPI

0%

10%

20%

30%

40%

50%

60%

70%

80%

Redis w/ vstimecmp & VSSI Ext., 2 vCPUs



Benchmark Results – VSEI

• We ping the virtual machine 100,000 times

• Ping latency is reduced 11% on average

• Traps due to MMIO are reduced by ~300,000 times, as expected.



Future Work

• Pass-through device interrupts: need IOMMU

• More design details need to be iron out

> Priority controls, secure virtual interrupts etc.

• Integration with future RISC-V interrupt controllers

• Validate the design on more hypervisors



Copyright©2020 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive 

statements including, without limitation, statements regarding 

the future financial and operating results, future product 

portfolio, new technology, etc. There are a number of factors that 

could cause actual results and developments to differ materially 

from those expressed or implied in the predictive statements. 

Therefore, such information is provided for reference purpose 

only and constitutes neither an offer nor an acceptance. Huawei 

may change the information at any time without notice. 

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。

Bring digital to every person, home and 
organization for a fully connected, 
intelligent world.

Thank you.


