

Building a Cloud Infrastructure to Deploy Microservices as
MicroVM Toro Guests

www.torokernel.io

Matias Vara Larsen
matiasevara@gmail.com

http://www.torokernel.io/
mailto:matiasevara@gmail.com

Microservice #0

Logging

Microservice #1

Order

Microservice #2

Catalog

What are microservices?

Logging

Order

Catalog

Monolithic Application

Decomposed Application
into Services

e.g., Amazon website

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

How are microservices deployed?

Microservice #1

Service instance
per VM

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

How are microservices deployed?

Microservice #1

The use of VMs to host
microservices allows

to isolate different services

VMs are hosted on a Baremetal
Host or as instances on

a Cloud Provider, e.g, AWS
or GCE

Device Model
(Virtual Machine Monitor)

Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

How are microservices deployed?

Microservice #1

e.g., Linux, Windows

e.g., QEMU, Firecracker

e.g., User application on a GP OS

e.g., KVM, HyperV, Xen

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

General Purpose Guest OS

Microservice #1

Scheduler FileSystem

DriversNetworking

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

Microservice #0

● User and kernel mode
● User application executes as process
with its own memory space
● User-to-kernel communication relies on
syscalls
● General purpose scheduler which is
timed-based
● Support for different Filesystems
and drivers

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

General Purpose Guest OS

Microservice #1

Scheduler FileSystem

DriversNetworking

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

VMs take long time
to be

up and running

[1]“Demystifying container vs VM-based security: Security in plaintext”
(https://cloud.google.com/blog/products/gcp/demystifying-container-vs-vm-based-security-security-in-plaintext)

The creation and
storage of VMs

image are not simple[1]

Guests consume
a lot of resources

,e.g., memory, cpu,
on-disk image

A different set of drivers
may be needed depending

on the Cloud provider
device model

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

General Purpose Guest OS

Microservice #1

Scheduler FileSystem

DriversNetworking

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

VMs take long time
to be

up and running

[1]“Demystifying container vs VM-based security: Security in plaintext”
(https://cloud.google.com/blog/products/gcp/demystifying-container-vs-vm-based-security-security-in-plaintext)

The creation and
storage of VMs

image are not simple[1]

Guests consume
a lot of resources

,e.g., memory, cpu,
on-disk image

A different set of drivers
may be needed depending

on the Cloud provider
device model

These issues end up by
limiting the number of
instances that a server

can host and the cost of
maintenance

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

Unikernel [2]

Microservice #1

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

[2] “Unikernels: library operating systems for the cloud”, Madhavapeddy et al., 2013
[3] “Unikernels: the next stage of Linux’s dominance”, Ali Raza et al., 2019

e.g., Osv, MirageOS, Unikraft, NanoVMs

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

Unikernel [2]

Microservice #1

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

Single Address Space

Kernel + User’s application, e.g., NGIX, Python

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

Unikernel [2]

Microservice #1

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

Single Address Space

Kernel + User’s application, e.g., NGIX, Python

The port of an
existing application
takes a lot of work

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

Unikernel [2]

Microservice #1

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

Single Address Space

Kernel + User’s application, e.g., NGIX, Python

The port of an
existing application
takes a lot of work

Toro is an application-oriented unikernel that allows microservices to run
efficiently in VMs thus leveraging the strong isolation VMs provide.

Toro Kernel

Application-oriented Kernel

Threads

Networking

Devices Filesystem

Memory

Toro is an embedded kernel including five units:
- Process
- Memory
- Filesystem
- Networking
- Devices, e.g., Block Device, Network Device
Each unit provides minimalist APIs accessible from the embedded application

GetMem()
FreeMem()

BeginThread()
ThreadSleep()

FileOpen()
FileClose()

RegisterBlockDriver()
RegisterNetworkInterface()

~ 18 KLOC

Toro Kernel

Application-oriented Kernel

Threads

Filesystem

Memory

Toro is an embedded kernel including five units:
- Process
- Memory
- Filesystem
- Networking
- Devices, e.g., Block Device, Network Device
Each unit provides minimalist APIs accessible from the embedded application

GetMem()
FreeMem()

BeginThread()
ThreadSleep()

FileOpen()
FileClose()

RegisterBlockDriver()
RegisterNetworkInterface()

~ 18 KLOC

Networking

Devices

Toro focus on
blocking and
non-blocking

AF_INET
sockets

Toro focus on
VirtIO devices:
- virtio-block
- virtio-net

Microservice

Uses

Application-oriented Kernel
● User application and kernel units are

compiled in a single binary

● The application includes only the
component required

Toro Kernel

Threads

Networking

Devices Filesystem

Memory

Microservice

Uses

Application-oriented Kernel
● User application and kernel units are

compiled in a single binary

● The application includes only the
component required

Toro Kernel

Threads

Networking

Devices Filesystem

Memory
program WebServerAppliance;
uses
 Memory,
 Filesystem,
 Threads,
 Networking,
 Fat,
 Virtio-blk,
 Virtio-net;
Begin
//
// Your Code Goes Here
//
End.

The generated binary is Immutable[1], i.e., the
generated image can be used across different
hypervisors without the need to recompile it.

MyMicroservice.elf

Application-oriented Kernel

Microservice

Uses

Toro Kernel

Threads

Networking

Devices Filesystem

Memory

Kernel cannot be modified
during its life

[1]“Immutable Infrastructure”, Stella

CloudIt.sh

Launches

VM

Application-oriented Kernel

Microservice

Uses

Toro Kernel

Threads

Networking

Devices Filesystem

Memory

MyMicroservice.elf

Uses

CloudIt.sh

Launches

VM

Application-oriented Kernel

Microservice

Uses

Toro Kernel

Threads

Networking

Devices Filesystem

Memory

MyMicroservice.elf

Uses

Let’s see how is deployed
a WebServer appliance

The WebServer Appliance
● Simple microservice that serves files by using

the HTTP protocol
– Find it at https://github.com/torokernel/torokernel among other examples

– This appliance is used to host Toro’s website (http://www.torokernel.io and click on “View on
Toro”)

https://github.com/torokernel/torokernel
http://www.torokernel.io/

How the appliance is setup?
the code

Bare-metal host

KVM

VM Context #0

Toro Guest

FileSystem
(FAT)

Drivers
(virtio-blk,virtio-net)

Networking
(TCP/IP Stack)

WebServer App

Bare-metal host

KVM

VM Context #0

Toro Guest

WebServer App

VMM

KVM Driver

Guest (Mode)

Device
Emulation BIOS

In-kernel
device emulation

How the appliance is setup?
device model

FileSystem
(FAT)

Drivers
(virtio-blk,virtio-net)

Networking
(TCP/IP Stack)

Host Filesystem

Bare-metal host

KVM

VM Context #0

Toro Guest

WebServer App

Image/Binary for Guest

Image for Files

How the appliance is setup?
on-disk images

FileSystem
(FAT)

Drivers
(virtio-blk,virtio-net)

Networking
(TCP/IP Stack)

Bare-metal host (192.100.200.100)

KVM

VM Context #0

How the appliance is setup?
ethernet configuration

Toro Guest (192.100.200.101)

WebServer App

Host
Application

Ethernet

BRIDGE

FileSystem
(FAT)

Drivers
(virtio-blk,virtio-net)

Networking
(TCP/IP Stack)

IP Forwarding
to communicate

to outside

The Static WebServer
drawbacks

● Disk images consume memory and on-disk space, e.g., each guest
has its own image

● Disk images have to be distributed in all the nodes
● The use of a TCP/IP stack requires configurations, e.g., bridge, an

IP per guest, guest drivers, devices
● The use of more devices increases the attack surface
● Sharing of files between guests and host is hard
● Relying on a specific FS is not good for immutable images

The Static WebServer
drawbacks

● Disk images consume memory and on-disk space, e.g., each guest
has its own image

● Disk images have to be distributed in all the nodes
● The use of a TCP/IP stack requires configurations, e.g., bridge, an

IP per guest, guest drivers, devices
● The use of more devices increases the attack surface
● Sharing of files between guests and host is hard
● Relying on a specific FS is not good for immutable images

Can we do it better?!

The Static WebServer
drawbacks

● Disk images consume memory and on-disk space, e.g., each guest
has its own image

● Disk images have to be distributed in all the nodes
● The use of a TCP/IP stack requires configurations, e.g., bridge, an

IP per guest, guest drivers, devices
● The use of more devices increases the attack surface
● Sharing of files between guests and host is hard
● Relying on a specific FS is not good for immutable images

Can we do it better?!

We propose to use of virtio-fs for filesystem, virtio-vsocket for networking
and microvm as QEMU machine to simplify toro unikernel’s code, reduce attack surface

and ease appliance configuration. Also, we propose to use CephFS to provide a
distributed FS among VMs.

Bare-metal host

KVM

VM Context #0

VMM
QEMU microvm

ToroKernel

Microservice

virtio-fsvirtio-vsocket

● Virtio-fs and virtio-vsocket are virtio-devices
that are in QEMU since 5.0

● Microvm is a minimalist QEMU machine which
provides a simplified device-model based on
virtio. In QEMU since 5.x

Bare-metal host

KVM

VM Context #0

VMM
QEMU microvm

ToroKernel

Microservice

virtio-fsvirtio-vsocket
 virtiofsd

Host Filesystem

Mount Point
/mnt/cephfs

An instance of
virtiofsd is launched

per guest

Bare-metal host

KVM

VM Context #0

VMM
QEMU microvm

ToroKernel

Microservice

virtio-fsvirtio-vsocket
 virtiofsd

Host Filesystem

Mount Point
/mnt/cephfs

Simpler than managing
files inside disk image

Guest is not
based on a specific

FS
Only need to setup

the tag and path
of the mount-point

54% LoC less
In Filesystem!

Bare-metal host

KVM

VM Context #0

VMM
QEMU microvm

ToroKernel

Microservice

virtio-fsvirtio-vsocket
 virtiofsd

Host Filesystem

Mount Point
/mnt/cephfs

Network Stack

Host Application

POSIX Socket API

Outside the host

Bare-metal host

KVM

VM Context #0

VMM
QEMU microvm

ToroKernel

Microservice

virtio-fsvirtio-vsocket
 virtiofsd

Host Filesystem

Mount Point
/tmp/MyData

Network Stack

Host Application

POSIX Socket API
TCP/IP stack not needed

No need of virtio-netOnly need to setup
the CID of each guest

Simpler communication
based on POSIX Socket API

Outside the host

40% LoC less in
Networking!

Bare-metal host

KVM

VM Context #0

VMM
QEMU microvm

ToroKernel

Microservice

virtio-fsvirtio-vsocket
 virtiofsd

Host FilesystemHost Filesystem

Mount Point
/mnt/cephfs

Network Stack

Host Application

POSIX Socket API

Outside the host

CephFS is a highly available and
performant file store for a variety of

applications

Ceph 3-node cluster

Node1
MON
OSD

(Files)

Node3
OSD

(Files)

Ceph cluster

Node2
OSD

(Files)

Toro Cloud

Each OSD host
has a /dev/sdb of

10Gb of disk

OVH Cloud nodes at ~ $16 per
month per host (2 vCores, 8GB
RAM)

Ceph 3-node cluster

Node1
MON
OSD

(Files)

Node3
OSD

(Files)

Ceph cluster

Node2
OSD

(Files)

Host Client1

Mount Point
/mnt/cephfs

Host Client2

Mount Point
/mnt/cephfs

Toro Cloud

ToroVMM
(orchestration)

Files and binaries

OVH Cloud nodes at ~
$3 per month per host
(1vCore, 2GB RAM)

Ceph 3-node cluster

Node1
MON
OSD

(Files)

Node3
OSD

(Files)

Ceph cluster

Node2
OSD

(Files)

Host Client1

Mount Point
/mnt/cephfs

Host Client2

Mount Point
/mnt/cephfs

Toro Cloud

 QEMU microvm

ToroKernel

Microservice1

virtio-fs virtio-vsocket

 QEMU microvm

ToroKernel

Microservice2

virtio-fs virtio-vsocket

ToroVMM
(orchestration)

Outside the host

Outside the host

Results
● Binary Size: 235 Kb that includes kernel and user’s application

● Time to rebuild the microservice: ~ 500ms

● Boot cycle: ~ 80ms

– $echo “Hello World” is ~2.6 ms

● CPU Usage: 90% at high and 10% sleep

● Memory footprint per VM: 2.9% (~ 60Mb) or 35 VMs per hosts

– QEMU compiled with all enabled

● Price: 58 euros/month ~ 0.85 euros/month per VM

● See https://github.com/torokernel/torocloudscripts

https://github.com/torokernel/torocloudscripts

Results
● Binary Size: 235 Kb that includes kernel and user’s application

● Time to rebuild the microservice: ~ 500ms

● Boot cycle: ~ 80ms

– $echo “Hello World” is ~2.6 ms

● CPU Usage: 90% at high and 10% sleep

● Memory footprint per VM: 2.9% (~ 60Mb) or 35 VMs per hosts

– QEMU compiled withall the configuration

● Price: 58 euros/month ~ 0.85 euros/month per VM

● See https://github.com/torokernel/torocloudscripts

“It is all talk until code runs.” - Ward Cunningham

https://github.com/torokernel/torocloudscripts

Challenges
● Support live-migration which is not currently supported

by microvm machine
● Improve bottleneck at vsocket forwarding
● Improve overall performance by using zero copy in

virtio-fs and virtio-vsocket
● Improve evaluation by comparing with

unikernels/containers/gpos

QA

