Building a Cloud Infrastructure to D;éploy Microservices as
MicroVM Toro Guests

www.torokernel.io

Matias Vara Larsen
matiasevara@gmail.com

http://www.torokernel.io/
mailto:matiasevara@gmail.com

What are microservices?

e.g., Amazon website

Logging

Order

Catalog

Monolithic Application

Decomposed Application
into Services

Logging

Microservice #0

Order

Microservice #1

Catalog

Microservice #2

How are microservices deployed?

L[icrosence]} {[Vicrosenvice #]J

[Service instancg T T

per VM
VM Context #0 VM Context #1

~

How are microservices deployed?

The use of VMs to host
microservices allows
to isolate different services

I i icrosarvica HA1])
[Microservice #0 | I |\/|/ICL —

VMs are hosted on a Baremetal

T Host or as instances on
a Cloud Provider, e.g, AWS

or GCE
-

VM Context #1

How are microser

e.g., User application on a GP OS
/
[Microservice #0

________ ii / e.g., QEMU, Firecracker

Device Model / L L Microservice # I

(Virtual Machine Monitor)

_)
T
/

e.g., KVM, HyperV, Xen

/[Microservice #0]\

ﬁ Microservice #1 N
A

-

i * User and kernel mode
7 * User application executes as process
TScheduIer] [FileSystemT with its own memory space _
* User-to-kernel communication relies on
[Networking] [Drivers] syscalls o
* General purpose scheduler which is
\\ General Purpose Guest OS timed-based
A * Support for different Filesystems
and drivers
a >
[VM Context #0 1 [VM Context #1 1
_ Hypervisor)
Bare-metal host /

Guests consume

a lot of resources 40 D ﬁ '\"‘f‘rfme\rvice #1]\

’e'g'r’]_rcrl]iglr(n i?r?; c;pu, A different set of drivers
N\~ J _/ may be needed depending
L y N on the Cloud provider
[Scheduler] [FiIeSystem] device model - [FiIeSystem]
[Networking] [Drivers] [Networking] [Drivers]
K& General Purpose Guest OS General Purpose Guest OS /
AN A
/ The creation and
VMs take long time storage of VMs \
to be image are not simple[1])
up and running
L v Context #0 J L VM Context #1

[1]“Demystifying container vs VM-based security: Security in plaintext”
k (https://cloud.google.com/blog/products/gcp/demystifying-container-vs-vm-based-security-security-in-plaintext)

Guests consume
a lot of resources
,e.d., memory, cpu, These issues end up by
on-disk image limiting the number of
V% - — instances that a server

}/ can host and the cost of
[Scheduler] lFiIeSystJ

maintenance

ileSystem

[Networking] m [Drivers]
\k General FC Dose Guest OS General Purpose Guest OS /
AN A
/ The creation and
VMs take long time storage of VMs \
to be image are not simple[1])
up and running
L v Context #0 J L VM Context #1 }

[1]“Demystifying container vs VM-based security: Security in plaintext”
K (https://cloud.google.com/blog/products/gcp/demystifying-container-vs-vm-based-security-security-in-plaintext)

Microservice #0] /[Microservice #1]\

T

ﬁ

e.g., Osy, MirageOS, Unikraft, NanoVMs

LbchﬁjuleFJ

[N etworking]

\ General Purpose Guest OS / k Unikernel [2] /
A

A

FieSysiem
| J

[Drivers] +

(g

-

o

R 1 i] (\/ARA N R 1 Il A]

[2] “Unikernels: library operating systems for the cloud”, Madhavapeddy et al., 2013
[3] “Unikernels: the next stage of Linux’s dominance”, Ali Raza et al., 2019

Hypervisor)

Bare-metal host /

ﬁ Microservice #0 h /[Microservice #1

[Kernel + User’s application, e.g., NGIX, Python]]\ f
L Single Address Space \
S

W] [FiIeSystem]

[Networkinm +

\ General Purpose Guest OS /\\\ Unikernel [2]
A A

(g

{ VM Context #0 J { VM Context #1

_ Hypervisor

\ Bare-metal host

ﬁ Microservice #0 h /[Microservice #1

Kernel + User’s application, e.g., NGIX, Python

[]
L\ Single Address Space]\\f
W] [FileSystem|

[Networkinm v

\
General Purpose Guest OS Unikernel [2]
O A

T -,

The port of an
existing application [VM Context #1
takes a lot of work
Hypervisor

Bare-metal host

Toro is an application-oriented unikernel that allows microservices to run
efficiently in VMs thus leveraging the strong isolation VMs provide.

Application-oriented Kernel

BeginThread()
ThreadSleep()

RegisterBlockDriver()
RegisterNetworkinterface()

1 Toro Kernel

[Threads][Memory]

[Devices] [Filesystem]

GetMem()
FreeMem()

" (Networking)"
\ etworking

)

~ 18 KLOC

FileOpen()
FileClose()

- Process
- Memory
- Filesystem
- Networking

- Devices, e.g., Block Device, Network Device
Each unit provides minimalist APIs accessible from the embedded application

Toro is an embedded kernel including five units:

Application-oriented Kernel

Toro focus on |

VirtlO devices: :

- virtio-block [Devices]

- virtio-net [Networking]

L Toro focus on
blocking and
non-blocking

AF INET

sockets

Application-oriented Kernel

-

Toro Kernel I

[Threads][Memory]

[Devices] [Filesystem]

o

[Networking] Y,

Uses

[Microservice}

* User application and kernel units are

compiled in a single binary

* The application includes only the

component required

Application-oriented Kernel

-

Toro Kernel I

[Threads][Memory]

[Devices] [Filesystem]

o

[Networking] Y,

Uses

[Microservice}

program WebServerAppliance;
uses
Memory,
Filesystem,
Threads,
Networking,
Fat,
Virtio-blk,
Virtio-net;
Begin
I
I/ Your Code Goes Here
I/
End.

Application-oriented Kernel

4 Toro Kernel)
Threads][Memory]

: Devices] [Filesystem]

N [Networking] Y,

Uses

[Microsewice}

\

Kernel cannot be modified
during its life

[1]“Immutable Infrastructure”, Stella

> MyMicroservice.elf

The generated binary is Immutable[1], i.e., the
generated image can be used across different

hypervisors without the need to recompile it.

Application-oriented Kernel

4 Toro Kernel)
Threads][Memory]

: Devices] [Filesystem]

N [Networking] Y,

Uses

[Microsewice}

\

>

L w]

Launches

MyMicroservice.elf

Application-oriented Kernel

4 Toro Kernel

: Devices] [File

Threads][Meman. |

Let’'s see how is deployed

\ W
A\ LaunchesT

N [Networki a WebServer appliance
A —
> MyMicroservice.elf
Uses
[Microsewice}

The WebServer Appliance

* Simple microservice that serves files by using
the HTTP protocol

- Find it at https://github.com/torokernel/torokernel among other examples

— This appliance is used to host Toro’s website (http://www.torokernel.io and click on “View on
Toro”)

https://github.com/torokernel/torokernel
http://www.torokernel.io/

How the appliance Is setup?
/ [WebServer App] \ the COde

¢

4 3)

FileSystem Networking
(FAT) (TCP/IP Stack)

Drivers
(virtio-blk,virtio-net)

k Toro Guest j

A

4 I

_ Bare-metal host)

How the appliance Is setup?

device model

/ [WebServer App]\

¢

l

FileSystem
(FAT)

I

Networking 3
(TCP/IP Stack) |

Drivers
(virtio-blk,virtio-net)

N

A

Toro Guest j

Guest (Mode)

Device

KVM Driver

In-kernel
device emulation

/

VM Context #0

Bare-metal host

How the appliance is setup?
on-disk Images

/ [WebServer App]\ """""""""""""""""

4 ,)
¢ Image/Binary for Guest
((FileSystem Networking 3 Image for Files
(FAT) (TCP/IP Stack) |
Drivers) Host Filesystem
[(virtio-blk,virtio-net)) \ ___________ /
k Toro Guest / ________________

=

A

/

VM Context #0

_ Bare-metal host)

How the appliance Is setup?

? \' """""" 0 communicate
[WebServer App] to outside

ethernet conflguratlon @rwardmg
t

((FileSystem Networking 3
(FAT) (TCP/IP Stack) |

Drivers) '
-~ . Host
[(virtio-blk,virtio-net) J < Etherr:et :>[Application J
1

kToro Guest (192.100.200.101)

VM Context #0

_ Bare-metal host (192.100.200.100))

BRIDGE,

The Static WebServer

drawbacks

Disk images consume memory and on-disk space, e.g., each guest
has its own image

Disk images have to be distributed in all the nodes

The use of a TCP/IP stack requires configurations, e.d., bridge, an
IP per guest, guest drivers, devices

The use of more devices increases the attack surface
Sharing of files between guests and host is hard
Relying on a specific FS is not good for immutable images

The Static WebServer

drawbacks

Disk images consume memory and on-disk space, e.g., each guest
has its own image

Disk images have to be distributed in all the nodes

The use of a TCP/IP stack requires configurations, e.d., bridge, an
IP per guest, guest drivers, devices

The use of more devices increases the attack surface
Sharing of files between guests anﬁ@@h 0
Relying on a specific FS is not good for i

Can we do it better?!

We propose to use of virtio-fs for filesystem, virtio-vsocket for networking
and microvm as QEMU machine to simplify toro unikernel’'s code, reduce attack surface
and ease appliance configuration. Also, we propose to use CephFS to provide a
distributed FS among VMs.

([[Microserice])

¢ e Virtio-fs and virtio-vsocket are virtio-devices
that are in QEMU since 5.0

{/irtio-vsockeﬂ[virtio-fs]

ToroKernel

 Microvm is a minimalist QEMU machine which
provides a simplified device-model based on

----------- i 7: virtio. In QEMU since 5.x
VMM

QEMU microvm /

!

4)

VM Context #0

_ Bare-metal host -

([[Miorosenvice])

¢

(A

{/irtio-vsockeﬂ[virtio-fs

ToroKernel

______ s L

VMM

QEMU microvm /

!

virtiofsd

Mount Point
/mnt/cephfs

\ Host Filesystem /

>

An instance of
virtiofsd is launched

per guest

/

VM Context #0

Bare-metal host

Guest is not

based on a specific s ~ Only need to setup
FS the tag and path
~ Mount Point of the mount-point
/mnt/cephfs |4 “— P
{/irtio-vsockeﬂ virtio-fs — -
Toro virtiofsd |
- Y \ Host Filesystem /
54% LoC less
In Filesystem!

Simpler than managing
files inside disk image

-)

VM Context #0

_ Bare-metal host)

(" [ioroserics])

Al

[/irtio-vsocke][virtio-fs

ToroKernel

______ s L

virtiofsd

POSIX Socket AP
4)

Mount Point
/mnt/cephfs

\ Host Filesystem /

== === ===

[Host Application J

/

VMM
QEMU microvm / A
!
\/

VM Context #0

Bare-metal host

[Network Stack]

Outside the hc

TCP/IP stack not need;a P,OSIX SOCket AP

ﬁ/40% LoC lessin | 1) '
Networking! Simpler communication

[/irtio-vsocke][virtiofe=="T___ based on POSIX Socket API
ToroKernel wasd

'ﬁ‘ Filesystem J T~
Only need to setup No need of virtio-nﬂ [Host Application J

the CID of each guest ~— A
<)
/
\/

Outpide the hc
VM Context #0
Network Stack

_ Bare-metal host

/ [I\/iicroservice]
i

\ POSIX Socket AP

(
Mount Point
/mnt/cephfs

>

ToroKernel

[pmo-fsockeg[o ﬂ-

virtiofsd

Host Filesystem

VM Context #0

~

QEMU microvp—

CephFS is a highly available and
performant file store for a variety of
applications

Bare-metal host

Y

[Host Application]

A

\J

[Network Stack]

Outkide the hc

Each OSD host
has a /dev/sdb of
10Gb of disk

. Ceph cluster
s

i Node1

: MON

: OSD

; Files

1N (Files)

e

' Node2

5 OSD

5 (Files)

AN J
e 2
5 Node3

: OSD

; (Files)

t\ Y,

OVH Cloud nodes at ~ $16 per
month per host (2 vCores, 8GB
RAM)

. Ceph cluster

L :

hyred Host Client1 Files and binariesj

: OSD .

5 (Files) Mount Point

; N / /mnt/cephfs

e N

: Node2 ; :

I N

: (Files) ' Host Client2

AN J .

: Mount Point | :

(" Nodes | /mnt/cephfs | | OVH Cloud nodes at ~

: OSD :| $3 per month per host
(Files) TorovMM : | (vCore, 2GB RAM)

S—————..i i_.._(orchestration)

: Toro Cloud /[Microservice1 7\
i Cephcluster § {7 § v | | outside the host
: 4 Node1 ' : — Hf virtio-fs]E/irtio-vsocke] <:>
i MON ost Clien J :
: 0SD | ToroKernel :
| (Files) Mount Point [~ | - ;n -
/mnt/cephfs _ QEMU microvln /
' 4 \ ' ' '
: Node2 ; 5 ; ;
Fiooy N /[MicroserviceZ?\ ;
: : Host Client2 | : Y : Outside the host
AN J N
- N Mount Point virtio-fs]{/irtio-vsockea <:>
5 Node3 /mnt/cephfs 5
OSD ToroKernel J :
EE (Pl E E ToroVMM E ""'g """"""""" ;'7'1 == E
HEN J i1 (orchestration) i _QEMU microvim / :

Results

Binary Size: 235 Kb that includes kernel and user’s application
Time to rebuild the microservice: ~ 500ms

Boot cycle: ~ 80ms
- $echo “Hello World” is ~2.6 ms

CPU Usage: 90% at high and 10% sleep

Memory footprint per VM: 2.9% (~ 60Mb) or 35 VMs per hosts
- QEMU compiled with all enabled

Price: 58 euros/month ~ 0.85 euros/month per VM

See https://github.com/torokernel/torocloudscripts

https://github.com/torokernel/torocloudscripts

Results

Binary Size: 235 Kb that includes kernel and user’s application

Time to rebuild the microservice: ~ 500ms

Boot cycle:

- $echo

“It is all talk until code runs.” - Ward Cunningham

CPU Usage: 90% at high and 10% sleep

Memory footprint per VM: 2.9% (~ 60Mb) or 35 VMSs per hosts
- QEMU compiled withall the configuration

Price: 58 euros/month ~ 0.85 euros/month per VM

See https://github.com/torokernel/torocloudscripts

https://github.com/torokernel/torocloudscripts

Challenges

Support live-migration which is not currently supported
0y microvm machine

mprove bottleneck at vsocket forwarding

mprove overall performance by using zero copy in
virtio-fs and virtio-vsocket

Improve evaluation by comparing with
unikernels/containers/gpos

CODE WITH US

