- redhat

A KVM-unit-tests and KVM selftests
update for aarch64

Eric Auger
KVM Forum 2020

Overview

Introduction

Test Frameworks overview

Test Code Base on aarch64

Advertise the frameworks

« Examples

* Highlights

* Lessons learnt on some kvm-unit-tests developments
* Develop tests on models

» Test migration with kvm-unit-tests

Conclusion

Q. redhat.

Introduction

« KVM/arm64
* now used in production systems
« Some areas have stabilized (VGIC, ... \o/)
* Asignificant kernel code base
* Lots of traffic on the ML
 Code reworks (page table code, mitigations ...)
« Many new ARM v8.++ feature kernel developments without HW
 KVM unit test frameworks
« few unitary tests are contributed
* New features generally do not come with unitary tests
« Unitary tests generally come too late, do not have significant coverage
 Very few bug reproducers
« Time for introspection?
* Why? How to improve?

Q. rednhat.

In a nutshell (1/2)

When
Where

Tester writes

Dependency

Framework
brings

KVM selftests
Since 2018, ARM support since 2018
in the linux tree [2]

KVM user API function calls + guest code (C/asm @
EL1)

none

- KVM API wrappers & helpers

- gva/gpa allocation/mapping and gva/gpa/hva
translation

- host/guest basic sync

[1] existed before but not in its own repo
[2] tools/testing/selftests/kvm

kvm-unit-tests
Before 2010 [1], ARM support since 2014
In a separate repo [3]

Guest code only (C/asm @EL1/EL2 [4])

gemu (kvm/tcg), kvmtool, ...

- Guest code:
- basic OS services (vectors, SMP, UART, ...)
- few libc functions
- test specific utilities (error reporting)

- Set of bash scripts (config, grouping, migration)

[3] https://gitlab.com/kvm-unit-tests/kvm-unit-tests
[4] [RFC PATCH v3 0/7] arm64: Run at EL2

Q rednhat.

In a nutshell (2/2)

KVM selftests
Very adapted to - Tests with simple guest code
- Existing & new KVM user API testing
- Init sequence Testing
- Nested testing

kvm-unit-tests

- tests with more complex guest code (interrupts,

timers, dt ...)

- gemu/kvmtool (KVM/TCG) testing
- in-kernel emulated devices testing
- microbenches

- migration testing (with QEMU)
- nested testing

Q rednhat.

Facts about aarch64 tests

kvm selftests

- No aarch64 specific tests!
- Only framework and few
tests shared with

other archs (stolen time,
max vcpu, max memslots,
dirty log test, demand

paging)

kvm-unit-tests

SMP tests

GIC MMIO/IPI

ITS MSI controller
PMU v3

PLO31

cache tests
VTIMER/pTIMER
microbenchs
PSCI

commits
100

80

60 == all commits
—t— X86_64

40 — 390

20 == aarch64
(RN A

2017 2018 2019 2020
commits
180

160
140
120
100
80
60
40
20

0 Mk \—‘\0

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

== X86

== power
s$390x

==fe= aarch64

e

git log --pretty=oneline --after='YYYY-01-01' --before="YYYY-12-31' -- lib/x86_64 -- lib/x86_64 -- arm | wc -

Q. rednhat.

KVM selftests (1/2)
Steal-time Example (aarch64/x86)

Test that stolen time value reported to the guest by KVM matches procfs schedstat

e host:

. KVM USER API calls (host):

Create a VM

Create a memslot

Create a VM GVA/GPA mapping

Creates VPUS

Check the stolen time capability is supported (KVM_HAS_DEVICE_ATTR)
Configure the PV_TIME IPA (KVM_SET DEVICE_ATTR)

kvm_run's

» Set vcpu affininity, Spawn a thread on the same pCPU that steals time to the VM

 Read guest stolen time and compare it against procfs value

e Quest:

» smccc call to read the stolen time and write it at some place readable by the host (GVA/GPA/HVA)

Q. rednhat.

KVM selftests (2/2)

« Highlights:
* No need to wait for userspace integration (QEMU/kvmtool)
+ Testing efforts easily visible from the kernel community
* Good way to learn the KVM user API
* Very easy setup & fast iterations

* Needs
* Missing aarch64 version of few common tests (memslot related tests)

* No aarch64 specific tests yet!
« New KVM APIs could be unitary tested here, before userspace integration

 Need fuzzing of the KVM API (Marc's input)

* lll-behaved userspace
* lll-behaved guest, trying to use features the host does not support

* looming nested virt
* Write some doc on the framework?

Q. rednhat.

kvm-unit-tests (1/2)
Examples and lessons learnt

ITS MSI controller

programming required a lot of logic for translation table setup = ~ rewrote a driver (?!)
HW device ignores most of the wrong programming, not tester friendly

Came too late in the development process. Regression tests now

Opportunity to enable migration testing though (bug reproducer)

low level (register writing) = much more efficient

Incremental efforts based on cycle counter existing test

Very interested since you get a fine grain control as opposed to the perf layer
In sync with chain counter new support (found bugs!)

Those tests pave the way to ARMv8.5-PMU 64b counter support

Discovered some tests were not passing on some HW

Was also used for QEMU TCG PMU event counter support

Q. rednhat.

kvm-unit-tests (2/2)

« Highlights
» Also test a userspace
* Focus on guest code
« Automation (config, grouping, migration)

» Errata framework (adapt the test if the host has a specific commit) which helps ClI
integration

* Needs
* Improve the coverage of existing tests
» fuzzing: ill-behaved guest
» test vcpus features
* nested
« Better Advertise the framework from linux?
* “Reported-by: kvm-unit-tests” on top of usual R-b's [Alexandru's input]

Q. rednhat.

11

Develop Tests on FVP Model (1/3)

How to write tests without HW and keep up the pace with KVM developments?
Free-of-charge models: foundation model and FVP base model
A good blog to start with

* https://www.thegoodpenguin.co.uk/blog/booting-linux-with-fvp (Andrew Murray)
Most difficult is

 To find a good image (light but rich enough to compile the userspace)

* Find/hack the device tree (ARM Trusted Firmware) ??!!

* Get familiar with the model options (virtio_net, 9p, has_*, ...)

aarch64 | x86 | FVP
machine | machine | model
NFS model |
host kernel | Pboot-wrapper image | standalone KVM selftests
\ image 9P, kvm-unit-tests
tests : p kvmtool

Q. rednhat.

Develop tests on FVP model (2/3)
kvm-unit-tests

Running QEMU on ARM model is terrible!
 Need to continue efforts shrinking the executable [1]

Develop unit tests using kvmtool [2]
« Statistical Profiling Extension Test RFC [3] was developed on model

Not possible to test QEMU integration or migration though!
kvmtool integration lacks automation (integration with arm/unittests.cfqg)

[1] among others, [PATCH v4 00/12] Support disabling TCG on ARM (part 2)
[2] kvm-unit-tests PATCH v3 0/5] arm/arm64: Add support for running under kvmtool, Feb 2019
[3] [kvm-unit-tests RFC 0/4] KVM: arm64: Statistical Profiling Extension Tests, Sept 2020

12 ‘ redhat

Develop Tests on FVP Model (3/3)

FVP_Base_RevC-2xAEMvV8A -C cache_state_modelled=0\
-C bp.refcounter.non_arch_start_at default=1\

-C bp.secure_memory=false \

-C bp.virtio_net.enabled=1\

-C bp.virtio_net.hostbridge.userNetworking=1 \

-C bp.virtiop9device.root_path=/home/augere/GIGA_VM/9P \
-C bp.virtiop9device.mount_tag=FW \

-C bp.virtioblockdevice.image_path=image.raw \

-C cluster0.has_arm_v8-1=1 -C cluster0.has_arm _v8-2=1\
-C cluster0.has_statistical_profiling=1 \

-C cluster0.pmu-num_counters=8\

-C cluster0.pmu_has_chain_event=1\

-C cluster0.has_amu=1\

-C cluster0.NUM_CORES=4\

-a "cluster0.*=base-image/linux-system.axf" \

--disable-analytics

13

Fast Models - CLCD RevC 2xAEMv8A Base RevC FVP =

quest-771

s 0x3000000,
IMFO; PHSVer = 1

t=0

SUMHARY: 2 tests

KVH compatibility warning.

itialize it.

IRTIO=y enabled in ,config,

KVM compatibility warning,

nitialize it.

Daughter ssssssss Rate Limit ON

Total Time!: 4m 46s LeftCtrl+LeftAlt

lkvm run ——firmware /root/WORKSPACE/new_kut/arm/spe.flat -m 320 -c 2 --name

Info: Placing fdt at 0x80200000 - 0x80210000

larning: The maximum recommended amount of VCPUs is 1
* Stopping System Y runlevel compatibility [OK]
WARNING: early print support may not work, Found uart at 0x3f8, but early base i

chr_testdev_init; chr-testdev; can't find a virtio-console

INFO: Align= 1 bytes, Min Interval=256 Single record Hax Size = B4 bytes
INFO; Filtering Caps: Lat=1 Type=1 Events=1
INFO: spe: spe-events: PMBSR_EL1: Service=1 Collision=0 External Fault=0 Datalos

INFO: spe: spe-events: PMBSR_EL1: EC = OTHER buffer filled=1
INFO: spe: spe-events: SPE IRO! SR=0x20001

PASS: spe: spe-events: PMBSR_EL1: buffer full event

PASS: spe: spe-events: PMBSR_EL1: buffer full event

virtio-9p device was not detected,
While you have requested a virtio-9p device, the guest kernel did not in

Please make sure that the guest kernel was compiled with CONFIG_NET_SP_V

virtio—net device was not detected.
While you have requested a virtio-net device, the guest kernel did not i

mount -t 9p -o trans=virtio,version=9p2000.L FW WORKSPACE

~/kvmtool/lkvm run --cpus 2 --spe --pmu --console serial

--params "spe-events" --irqchip gicv3

--firmware ~/WORKSPACE/new_kut/arm/spe.flat

Q. rednhat.

14

Testing QEMU Migration with kvm-unit-tests

arm: unittests.cfg excerpt

[its-migration]

file = gic.flat

smp = $MAX _SMP

accel = kvm

extra_params = -machine gic-version=3 -append 'its-migration’
groups = its migration

arch = armo64

The test must belong to the migration group in unittests.cfg

The framework launches both source and destination gemu

Guest code initiates the migration by outputting the "migrate" keyword: puts("migrate\n");
Guest code then waits for the migration completion by calling blocking getchar()

Once the migration is over, the run script provides the stdin input which unblocks the guest
Following guest code is executed on the destination and can check the state is consistent

Q. rednhat.

15

Conclusions

 Two really nice test frameworks completely underused on ARM

» Test Development on ARM model/TCG is feasible (not with QEMU
though): develop tests on time!

* Fast iterations

 Clintegrated

 Fast & nice way to learn and contribute!

 Crying needs: bug reproducers, fuzzing, ...

« Make QEMU lighter to be runnable on ARM FVP model

Feel free to contact me at eric.auger@redhat.com!

Q. rednhat.

- redhat

THANK YOU

G+ plus.google.com/+RedHat f facebook.com/redhatinc
in linkedin.com/company/red-hat ’ twitter.com/RedHat

[>] youtube.com/user/RedHatVideos

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

