
A KVM-unit-tests and KVM selftests
update for aarch64

Eric Auger
KVM Forum 2020

 2

Overview

● Introduction
● Test Frameworks overview
● Test Code Base on aarch64
● Advertise the frameworks

● Examples
● Highlights
● Lessons learnt on some kvm-unit-tests developments
● Develop tests on models
● Test migration with kvm-unit-tests

● Conclusion

 3

Introduction
● KVM/arm64

● now used in production systems
● Some areas have stabilized (VGIC, ... \o/)
● A significant kernel code base
● Lots of traffic on the ML

● Code reworks (page table code, mitigations ...)
● Many new ARM v8.++ feature kernel developments without HW

● KVM unit test frameworks
● few unitary tests are contributed
● New features generally do not come with unitary tests
● Unitary tests generally come too late, do not have significant coverage
● Very few bug reproducers

● Time for introspection?
● Why? How to improve?

 4

In a nutshell (1/2)
KVM selftests kvm-unit-tests

When Since 2018, ARM support since 2018 Before 2010 [1], ARM support since 2014

Where in the linux tree [2] In a separate repo [3]

Tester writes KVM user API function calls + guest code (C/asm @
EL1)

Guest code only (C/asm @EL1/EL2 [4])

Dependency none qemu (kvm/tcg), kvmtool, ...

Framework
brings

- KVM API wrappers & helpers
- gva/gpa allocation/mapping and gva/gpa/hva
translation
- host/guest basic sync

- Guest code:

 - basic OS services (vectors, SMP, UART, ...)

 - few libc functions

 - test specific utilities (error reporting)

- Set of bash scripts (config, grouping, migration)

[1] existed before but not in its own repo [3] https://gitlab.com/kvm-unit-tests/kvm-unit-tests
[2] tools/testing/selftests/kvm [4] [RFC PATCH v3 0/7] arm64: Run at EL2

 5

In a nutshell (2/2)

KVM selftests kvm-unit-tests

Very adapted to - Tests with simple guest code

- Existing & new KVM user API testing

- Init sequence Testing

- Nested testing

- tests with more complex guest code (interrupts,
timers, dt ...)

- qemu/kvmtool (KVM/TCG) testing

- in-kernel emulated devices testing

- microbenches

- migration testing (with QEMU)
- nested testing

 6

Facts about aarch64 tests

2017 2018 2019 2020
0

20

40

60

80

100

all commits

x86_64

s390x

aarch64

git log --pretty=oneline --after='YYYY-01-01' --before='YYYY-12-31' -- lib/x86_64 -- lib/x86_64 -- arm | wc -l

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0

20

40

60

80

100

120

140

160

180

x86

power

s390x

aarch64

kvm selftests

kvm-unit-tests

- No aarch64 specific tests!
- Only framework and few
tests shared with
other archs (stolen time,
max vcpu, max memslots,
dirty log test, demand
paging)

SMP tests
GIC MMIO/IPI
ITS MSI controller
PMU v3
PL031
cache tests
vTIMER/pTIMER
microbenchs
PSCI

commits

commits

 7

KVM selftests (1/2)
Steal-time Example (aarch64/x86)

Test that stolen time value reported to the guest by KVM matches procfs schedstat
● host:

● KVM USER API calls (host):
● Create a VM
● Create a memslot
● Create a VM GVA/GPA mapping
● Creates VPUS
● Check the stolen time capability is supported (KVM_HAS_DEVICE_ATTR)
● Configure the PV_TIME IPA (KVM_SET_DEVICE_ATTR)
● kvm_run's

● Set vcpu affininity, Spawn a thread on the same pCPU that steals time to the VM
● Read guest stolen time and compare it against procfs value

● Guest:
● smccc call to read the stolen time and write it at some place readable by the host (GVA/GPA/HVA)

 8

KVM selftests (2/2)
● Highlights:

● No need to wait for userspace integration (QEMU/kvmtool)
● Testing efforts easily visible from the kernel community
● Good way to learn the KVM user API
● Very easy setup & fast iterations

● Needs
● Missing aarch64 version of few common tests (memslot related tests)
● No aarch64 specific tests yet!

● New KVM APIs could be unitary tested here, before userspace integration
● Need fuzzing of the KVM API (Marc's input)

● Ill-behaved userspace
● Ill-behaved guest, trying to use features the host does not support
● looming nested virt

● Write some doc on the framework?

 9

kvm-unit-tests (1/2)
Examples and lessons learnt

● ITS MSI controller
● programming required a lot of logic for translation table setup ➡ ~ rewrote a driver (?!)
● HW device ignores most of the wrong programming, not tester friendly
● Came too late in the development process. Regression tests now
● Opportunity to enable migration testing though (bug reproducer)

● PMU
● low level (register writing) ➡ much more efficient
● Incremental efforts based on cycle counter existing test
● Very interested since you get a fine grain control as opposed to the perf layer
● In sync with chain counter new support (found bugs!)
● Those tests pave the way to ARMv8.5-PMU 64b counter support
● Discovered some tests were not passing on some HW
● Was also used for QEMU TCG PMU event counter support

 10

kvm-unit-tests (2/2)
● Highlights

● Also test a userspace
● Focus on guest code
● Automation (config, grouping, migration)
● Errata framework (adapt the test if the host has a specific commit) which helps CI

integration
● Needs

● Improve the coverage of existing tests
● fuzzing: ill-behaved guest
● test vcpus features
● nested
● Better Advertise the framework from linux?

● “Reported-by: kvm-unit-tests” on top of usual R-b's [Alexandru's input]

 11

Develop Tests on FVP Model (1/3)
● How to write tests without HW and keep up the pace with KVM developments?
● Free-of-charge models: foundation model and FVP base model
● A good blog to start with

● https://www.thegoodpenguin.co.uk/blog/booting-linux-with-fvp (Andrew Murray)
● Most difficult is

● To find a good image (light but rich enough to compile the userspace)
● Find/hack the device tree (ARM Trusted Firmware) ??!!
● Get familiar with the model options (virtio_net, 9p, has_*, ...)

aarch64
machine

host kernel

tests

x86
machine

NFS
boot-wrapper image

9P

FVP
model

standalone KVM selftests
kvm-unit-tests
kvmtool

model

image

 12

Develop tests on FVP model (2/3)
kvm-unit-tests

● Running QEMU on ARM model is terrible!
● Need to continue efforts shrinking the executable [1]

● Develop unit tests using kvmtool [2]

● Statistical Profiling Extension Test RFC [3] was developed on model

● Not possible to test QEMU integration or migration though!
● kvmtool integration lacks automation (integration with arm/unittests.cfg)

[1] among others, [PATCH v4 00/12] Support disabling TCG on ARM (part 2)
[2] kvm-unit-tests PATCH v3 0/5] arm/arm64: Add support for running under kvmtool, Feb 2019
[3] [kvm-unit-tests RFC 0/4] KVM: arm64: Statistical Profiling Extension Tests, Sept 2020

 13

FVP_Base_RevC-2xAEMv8A -C cache_state_modelled=0 \

-C bp.refcounter.non_arch_start_at_default=1 \

-C bp.secure_memory=false \

-C bp.virtio_net.enabled=1 \

-C bp.virtio_net.hostbridge.userNetworking=1 \

-C bp.virtiop9device.root_path=/home/augere/GIGA_VM/9P \

-C bp.virtiop9device.mount_tag=FW \

-C bp.virtioblockdevice.image_path=image.raw \

-C cluster0.has_arm_v8-1=1 -C cluster0.has_arm_v8-2=1 \

-C cluster0.has_statistical_profiling=1 \

-C cluster0.pmu-num_counters=8 \

-C cluster0.pmu_has_chain_event=1 \

-C cluster0.has_amu=1 \

-C cluster0.NUM_CORES=4 \

-a "cluster0.*=base-image/linux-system.axf" \

--disable-analytics mount -t 9p -o trans=virtio,version=9p2000.L FW WORKSPACE

~/kvmtool/lkvm run --cpus 2 --spe --pmu --console serial
--params "spe-events" --irqchip gicv3 --firmware ~/WORKSPACE/new_kut/arm/spe.flat

Develop Tests on FVP Model (3/3)

 14

Testing QEMU Migration with kvm-unit-tests

● The test must belong to the migration group in unittests.cfg
● The framework launches both source and destination qemu
● Guest code initiates the migration by outputting the "migrate" keyword: puts("migrate\n");
● Guest code then waits for the migration completion by calling blocking getchar()
● Once the migration is over, the run script provides the stdin input which unblocks the guest
● Following guest code is executed on the destination and can check the state is consistent

arm: unittests.cfg excerpt

[its-migration]
file = gic.flat
smp = $MAX_SMP
accel = kvm
extra_params = -machine gic-version=3 -append 'its-migration'
groups = its migration
arch = arm64

 15

Conclusions

● Two really nice test frameworks completely underused on ARM
● Test Development on ARM model/TCG is feasible (not with QEMU

though): develop tests on time!
● Fast iterations
● CI integrated
● Fast & nice way to learn and contribute!
● Crying needs: bug reproducers, fuzzing, ...
● Make QEMU lighter to be runnable on ARM FVP model

Feel free to contact me at eric.auger@redhat.com!

THANK YOU

plus.google.com/+RedHat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatlinkedin.com/company/red-hat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

