

HYPERVISOR-MANAGED LINEAR ADDRESS TRANSLATION Gao Chao <chao.gao@intel.com>

October 30, 2020

Part1: Problem Statement

Part2: HLAT Introduction

Part3: Use HLAT to Enforce Guest Translation Integrity

PART1: PROBLEM STATEMENT

Problem in Page Table Based Access Control

- Reduce attack surface through access control
 - E.g. executable code must not be writable

• Attackers can bypass access control by overriding page table

- Enforce address translation integrity
 - In a VM, write-protecting CR3 page table leads to high performance penalty

Typical Page Table Overriding Attacks

Alias Mapping

Page Remapping

PART2: HLAT INTRODUCTION

HLAT Overview

SPEC: <u>https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html</u>

Goal: enforce (guest) translation integrity with VMM

Protected linear range (PLR): a range of guest linear address space

HLAT – Nested Page Table Walk

HLAT – Paging Structures

- Same as IA32e paging structures
- Support both 5-level and 4-level paging
- Bit 11: "Restart"

X D 3 Key	Ignored	Rsvd.	Address of 4KB page frame	_R gn.	G A D A C W / S W 1	PTE: 4KB page
-----------------	---------	-------	---------------------------	------------------	---------------------	---------------------

HLAT Terminal Fault

- non-present or reserved bits
- new page fault error code: bit 7 "HLAT Terminal Fault"

EPT Control Bit "Paging-Write"

• "Paging Write" allows CPU to update A/D bits on pages that are non-writable to software.

EPT Control Bits	W	!w	!w pw
Software writes	Allowed	Denied	Denied
A/D bits update	Allowed	Denied	Allowed

- Improve efficiency of read-only guest page table (under EPT):
 - Reduce VM-exits due to A/D bits update
 - Relieve VMM from A/D bits emulation

EPT Control Bit "Verify Paging-write"

 "Verify Paging-write" enforces that all leaf guest-paging-structure pages encountered during the nested walk have PW set (under EPT), else generates an EPT violation

Prevent Alias Mapping with PW & VPW

VPW tagged guest memory can only be accessed with HLAT (PW tagged page table)

PART3: USE HLAT TO ENFORCE GUEST TRANSLATION INTEGRITY

Enforce Guest Translation Integrity

- Prevent page remapping
 - Write-protecting HLAT page table

- Prevent alias mapping
 - Set VPW for protected guest physical page under EPT
 - Set PW for HLAT paging structures pages under EPT

Update HLAT page table

- 1. Revert write-protection on HLAT through hypercall
- 2. Update HLAT page table
- 3. enforce write-protection on HLAT through hypercall

Security Value

In theory, an attacker with arbitrary memory write capability can make kernel text/rodata writable and then override them.

With this solution, an attacker cannot easily mark kernel text/rodata writable. It must first turn off HLAT or mark HLAT page table writable through hypercalls.

Compare with Write-protecting CR3 Page Table

Efficient

- Intercept CR3 switching
- Granularity (less impact to normal mappings)
 - 4KB vs. whole virtual address space

Clean

 Small and less intrusive changes to memory management

Demo

sta {

}

tic int init kumpat toct init(void)	[31.133307] kvmpat test initing
CIC INC INIC KVmpac_Cest_INIC(VOID)	[31.133746] attempt to write to fffffff95600000
	[31.133758] BUG: unable to handle page fault for address: ffffffff95600000 🚽 🔤 text
int ret;	[31.142005] #PF: supervisor write access in kernel mode
	<pre>[31.149670] #PF: error_code(0x0003) - permissions violation</pre>
<pre>printk("kympat test initing\n"):</pre>	[31.156853] HLAT:
	<pre>[31.159396] PGD 1379c9023 P4D 1379c9023 PUD 1379ca023 PMD 1379cb023 PTE bbc00161</pre>
	[31.168156] PGD bd20e067 P4D bd20e067 PUD bd20f063 PMD 124aec063 PTE bbc00163 📉
<pre>ret = set_memory_rw(target, 1);</pre>	[31.176611] Oops: 0003 [#1] SMP NOPTI
if (ret)	[31.181160] CPU: 1 PID: 922 Comm: modprobe Not tainted 5.8.0+ #75 in HLAT
printk("set memory to rw %d\n", ret);	[31.188437] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubunWritable in
	[31.199319] RIP: 0010:kvmpat_test_init+0x52/0x1000 [kvmpat_test]
printk("attempt to write to %lx\n", target):	[31.206988] Code: 74 0e 89 c6 48 c7 c7 3c a0 3d c0 e8 eb 4f 32 d5 48 8b 35 41 d3 ff ·CR3 a0
*(unsigned long *)(void *)tanget - 0:	f <48> c7 00 00 00 00 00 83 c8 ff 5d c3 00 00 00 00 00 00 00 00 00 00
	[31.228716] RSP: 0018:ffff9b7c807afc60 EFLAGS: 00010286
	<pre>[31.234946] RAX: fffffff95600000 RBX: fffffffc03de000 RCX: 000000000000001</pre>
return -1;	[31.244416] RDX: 0000000000000000 RSI: ffff8961bbc98880 RDI: ffff8961bbc98888
	[31.254112] RBP: ffff9b7c807afc60 R08: 000000000000001 R09: 000000000001fd
	[31.264239] R10: ffff9b7c807afb40 R11: 00000000000001fd R12: 00000000ffffffff
	[31.274602] R13: ffff8961b6f80ef0 R14: 000000000000000 R15: ffff9b7c807afe70
	[31.284659] FS: 00007f988baf3540(0000) GS:ffff8961bbc80000(0000) knLGS:0000000000000000
	[31.296642] CS: 0010 DS: 0000 ES: 0000 CR0: 000000080050033
	[31.304795] CR2: tttttttt95600000 CR3: 0000000138ace003 CR4: 00000000360ee0
	[31.314098] DR0: 00000000000000 DR1: 0000000000000000 DR2: 000000000000000000000000000000000000
	[31.324394] DR3: 0000000000000000 DR6: 000000000000000000000000000000000000
	[31.334920] Call Trace:
	[31.338968] do_one_1n1tcall+0x52/0x210
	[31.344950] ? _cond_resched+0x1a/0x50
	[31.3510/2] ? Kmem_cache_alloc_trace+0x1ad/0x230
	[31.35/83/] ?
	[31.3630/4] d0_111t_module+0x5T/0x231

Changes to KVM

Advertise a PV feature

• CPUID hypervisor leaf

New hypercalls

- Allow guest to set HLAT root page and PLR
- Allow guest to set VPW/PW/RO flags for guest pages
 - Extend page tracking mechanism

Handle EPT violations due to guest's setting

Report #VE to guest

Changes to Guest Kernel

Manage HLAT page table and EPT flags

Hooks in set_memory_ro/rw APIs

Handle #PF

- Handle HLAT terminal fault
- Walks HLAT

Handle #VE

• In general, it means an attack is detected

Status and Plan

Status

- Finished changes on KVM/guest kernel and some tests in kvmunit-tests
- Verified on simulator

Plan

- Send out RFC patches
- Explore the possibility of using HLAT to enforce integrity for nonexecutable mapping

