
Building unit tests as EFI apps

kvm-unit-tests: When 
"KVM" doesn't mean KVM

Andrew Jones

drjones@redhat.com

1



Outline:

2

Quick kvm-unit-tests introduction

Current status of non-KVM targets

Motivation for building tests as EFI apps

Current status of EFI app targets

EFI app target implementation

Wrap-up



Quick kvm-unit-tests introduction

What is kvm-unit-tests?
A test framework and collection of unit tests for KVM

How does it test KVM?
Runs tiny guests which execute instructions generating traps 
to KVM and exits to QEMU

What’s a tiny guest look like to the test developer?
main() with a mixed API of kernel (irq_enable, virt_to_phys, ...) 
and libc (printf, malloc, ...) functions

3
Source:
https://www.linux-kvm.org/page/KVM-unit-tests
https://gitlab.com/kvm-unit-tests/kvm-unit-tests.git

Beware of bugs in 
the above code; I 
have only proved it 
correct, not tried it. 

― Donald Knuth

https://www.linux-kvm.org/page/KVM-unit-tests
https://gitlab.com/kvm-unit-tests/kvm-unit-tests.git


Quick kvm-unit-tests introduction (cont.)

4

QEMU / kvmtool

Linux
KVM

Hardware / emulator

KVM VM KVM unit test



Current status of non-KVM targets

QEMU accelerators
TCG, Hypervisor.framework (macOS HVF), Windows 
Hypervisor Platform (WHPX) 

s390x 
z/VM, LPAR hypervisors

x86 bare-metal and VMware
The unit tests are launched from grub and use environment 
variables in place of some hardware discovery

5 Source:
https://gitlab.com/kvm-unit-tests/kvm-unit-tests/-/blob/master/README.macOS.md
KVM Forum 2019 “Moving s390 kvm-unit-tests up the stack”
x86: Support environments without test-devices

https://gitlab.com/kvm-unit-tests/kvm-unit-tests/-/blob/master/README.macOS.md
https://www.youtube.com/watch?v=f3TxxX7KNZ8
https://gitlab.com/kvm-unit-tests/kvm-unit-tests/-/commit/03b1e4570f9678c59a1fdcd0428d21681541602e


Motivation for building tests as EFI apps

One portage, many targets (theoretically)
Environment variables can manage configuration differences

EFI is a relatively easy target
No need to determine the memory map nor implement reset

May enable faster KVM unit test development
Emulators are used when hardware isn’t available. It’s faster to 
only boot firmware.

Get yet another test target
Can now test firmware’s EFI implementations too

6

 The good thing 
about standards is 
that there are so 
many to choose 
from.
 
― Andrew S. Tanenbaum



Motivation for building tests as EFI apps (cont.)

7

QEMU / 
kvmtool

Linux
KVM

Hardware / emulator

KVM VM

KVM unit test

AAVMF / 
OVMF

Hardware / emulator

KVM unit test

EFI supporting firmware



8

▸ Simply configure with a new switch, --target-efi, and run make

▸ So far AArch64 only, works with QEMU and AAVMF, but that’s not 

overly exciting...

▸ It’s a work-in-progress for bare-metal (tested on AMD Seattle)

▸ Plan to try x86 tests with QEMU and OVMF next

▸ Second stop for x86 tests will be VirtualBox, as VirtualBox also 

supports booting VMs with OVMF

Current status of EFI app targets

Links::
https://github.com/rhdrjones/kvm-unit-tests/commits/target-efi

https://github.com/rhdrjones/kvm-unit-tests/commits/target-efi


EFI app target implementation

What needs to be added?
Arch-neutral EFI support code, linked with gnu-efi

What needs to be removed or bypassed?
As little as possible, but target-specific code must go

Other changes
Driver and paging setup improvements

9



10

▸ gnu-efi is an EFI development environment for the GNU toolchain

▸ Requires an odd build process; compile and link as a shared library and 

then objcopy select sections

▸ All gnu-efi apps start in efi_main(), which is implemented by the app

▸ A goal is to share one efi_main implementation among all 

architectures and tests

▸ kvm-unit-tests efi_main uses the gnu-efi API and direct UEFI calls to 

prepare the unit test for launch and then exit boot services

▸ exit() for EFI app calls the UEFI reset runtime service

What needs to be added?

EFI app target implementation (cont.)



11

▸ gnu-efi provides its own linker script 

▸ Need to remove or replace code referencing symbols defined in the 

original / default linker script (or rename them, e.g. etext →_etext)

▸ Goal is to push all original / default target assumptions into its linker 

script and the initial start assembly code (all code in the .init section)

▸ Then, when building as an EFI app, we only need to #ifdef out the .init 

section

▸ Any initialization common to the original / default target and to the 

EFI app target should be done in setup()

What needs to be removed or bypassed?

EFI app target implementation (cont.)



12

Comparison of the target startups

EFI app target implementation (cont.)

Prepare args, env, 
memmap and the 
rest of init

Original / default target

.init::start

setup()

Run the unit testmain()

Quit the testexit()

Relocate and set up 
stack

Prepare args, env, 
memmap, get FDT

EFI app target

UEFI loader

efi_main()

Run the unit testmain()

Quit the testexit()

Relocate and set up 
stack

The rest of initsetup()



EFI app target

▸ EFI app is relocated and given a stack by the 

UEFI loader

▸ DT comes from a DTB file on the EFI FS (we 

may need more ACPI support for x86)

▸ Command line args extracted gnu-efi call

▸ Env extracted with a UEFI runtime service call

▸ Memory map comes from gnu-efi call

▸ setup() called with MMU on and some 

devices initialized13

Original / default target

▸ .init::start relocates and sets up the stack

▸ DT and multiboot info come from QEMU

▸ Command line args extracted from DT or 

multiboot info

▸ Env provided by an initrd

▸ Memory map comes from DT or multiboot 

info, or is hardcoded

▸ setup() called with MMU off and no devices 

initialized

Comparison of the target startups

EFI app target implementation (cont.)



14

▸ Drivers should do device reset before init

▸ Improvements to device drivers, e.g. proper UART FIFO usage

▸ Generalize paging setup to work for the EFI memory map as well as 

the original / default memory map

▸ On bare-metal a ‘\r’ → ‘\r\n’ hack may be necessary. It shouldn’t hurt 

to always do it, but that could be a test suite config option

▸ Support choice as to what to do when starting with the MMU enabled 

and when exiting the unit test (environment variables and auxinfo)

Other changes

EFI app target implementation (cont.)



15

▸ AArch64 and maybe x86: Implement device reset before init and 

possibly other driver improvements

▸ AArch64: Support 4K pages (currently only supports 64K)

▸ x86: Some hardware descriptions may require parsing ACPI tables

Current and future challenges to finish the PoC’s

EFI app target implementation (cont.)



16

▸ kvm-unit-tests is already targeting more than just KVM 

▸ Adding an EFI app build to kvm-unit-tests will help to further expand 
the set of test targets

▸ An EFI app build may also be useful for faster KVM unit test 
development when emulators are used, since only firmware boots

▸ A PoC for AArch64 is pretty far along, but more platform 
assumptions must be removed to run all tests on bare-metal

▸ A PoC for x86 is planned. It’s expected to have a different set of 
challenges to those of AArch64.

Wrap-up



17

Thank you

https://www.linux-kvm.org/page/KVM-unit-tests
https://gitlab.com/kvm-unit-tests/kvm-unit-tests.git
https://github.com/rhdrjones/kvm-unit-tests/commits/target-efi

Andrew Jones <drjones@redhat.com>


