Guest Memory Protection
Demand for guest-memory-protection

- Cloud computing is common
- Protecting data in such environment
- Even from VMM/host OS/firmware
- Guest-memory-protection
 - Vendor neutral terminology in qemu/kvm world
Removing user space mapping

- GPA->HPA uses get_user_pages() (or its variant)
Operations of KVM MMU(x86)

- A new interface for KVM MMU
- Address conversion to resolve KVM MMU fault
 - GPA -> HPA
- Dirty page logging for live-migration
- User fault for postcopy: propagating KVM MMU fault into user space
Allowing multiple backends

- New interface for KVM MMU: GPA -> HPA
 - For various backend
- Update KVM MMU to use it
Dirty page logging

• modify mark_page_dirty()
• Instead of marking pte, maintain inside the backend
Postcopy

- Introduce new fd for postcopy
- Mostly same interface to userfaultfd for minimum modification to qemu
Allowing multiple type of VM

- Co-existence of Guest-memory-protected VM and normal VM
- Enhance capability ioctl for VM feature
 - (Some of) KVM capability becomes per-VM, not systemwide
- Enhance Switching device KVM ioctl to VM KVM ioctl for VM feature
More hooks for initialization/teardown

- Introduce VM-type for x86
- Some functionalities aren’t useable/must be enabled for memory-protected guest.
 - Hooks to disable/enable/check it
- CPU/CPUID/MSR/memory
 - More hooks for them
Disabling devices/features

- Some of devices/features aren’t usable (doesn’t make sense) for memory-protected guest
 - More knobs to disable
- Twist of ACPI-table to not-report those devices
- Really disable them in device-emulation
Reducing attack surface

- Eliminating BIOS device initialization
- Disabling initialization only
 IO(portio/mmio)(freezing (some of)device state)

Initialize after power-on

Initialized on reset
Ready-to-use
Proposal to make progress

- Hooks for CPU/memory initialization/teardown
 - More knobs for cpuid/MSR
- More knobs to disable device/registers if appropriate
 - Hook for ACPI table generation
- Add after-reset hook to twist the reset status
- Allowed-list of port-IO/MMIO region which configurable on startup
 - Instead of ad-hoc “if (enabled)” check
Removing qemu mapping to guest memory

• New internal structure: GPA -> HPA
 – Wrapper of: get_user_pages()
 – Struct file: address_space
• Update x86 kvm MMU code to use new interface
• Dirty page logging
• Postcopy
 – Userfaultfd isn’t directly usable.
 – Adds new fd with (mostly) same interface for
Reducing attack surface (cont)

- Don’t allow chipset configuration
- Qemu setup configuration and guest uses it
 - No bios setup because bios is in guest
 - E.g. Don’t allow to change MMCFG
 - Twisting reset state
- Right now, it’s adhoc “if” clauses.
- Disabling unused devices
- BIOS: no pflash
- Additional MSR constraint
 - Currently very adhoc
• Twisting reset state and freeze IO
 – No changes to chipset configuration

• Disabling some devices
 – E.g. legacy device (ISA devices), legacy interrupt controller, SMI
 – Add more device configurations to disable

• Twisting ACPI
 – for disabled devices
 – IRQ table (only MSI)
Disabling devices

- Some devices (especially legacy ones) should be disabled/eliminated.
- There are sever