
Isaku Yamahata(Intel)

Guest Memory Protection



Demand for guest-memory-protection

• Cloud computing is common

• Protecting data in such 
environment

• Even from VMM/host 
OS/firmware

• Guest-memory-protection
– Vendor neutral terminology in 

qemu/kvm world

Hardware

Kernel/VMM/firmware

VM
VM

CPU

Isolation barrier



Removing user space mapping

• GPA->HPA uses get_user_pages() (or its 

variant)

qemu

KVM 
MMU

KVM MMU fault: GPA

get_user_pages(): GPA->HPA

Page 
table

qemu

KVM 
MMU

KVM MMU fault: GPA

Back 
end

GPA->HPA

NEW

No user mapping:
Only initializes it



Operations of KVM MMU(x86)

• A new interface for KVM MMU

• Address conversion to resolve KVM MMU 

fault

– GPA -> HPA

• Dirty page logging for live-migration

• User fault for postcopy: propagating KVM 

MMU fault into user space



Allowing multiple backends 

• New interface for KVM MMU: GPA -> HPA

– For various backend

• Update KVM MMU to use it

KVM MMU
New 

interface

gpa->hpa
Existing one:

get_user_pages()

DAX/DAX-FS
offset + GPA/FS iomap

Anon inode
Struct xarray Addresss_space

Other 



Dirty page logging

• modify mark_page_dirty()

• Instead of marking pte, maintain inside the 

backend



Postcopy

• Introduce new fd for postcopy

• Mostly same interface to userfaultfd for 

minimum modification to qemu

qemu

Page table backend

User fault
KVM MMU fault: 
GPA-to-HPA

userfaultfd kvmfaultfd



Allowing multiple type of VM

• Co-existence of Guest-memory-protected 

VM and normal VM

• Enhance capability ioctl for VM feature

– (Some of) KVM capability becomes per-VM, 

not systemwide 

• Enhance Switching device KVM ioctl to VM 

KVM ioctl for VM feature



More hooks for initialization/teardown

• Introduce VM-type for x86

• Some functionalities aren’t useable/must 

be enabled for memory-protected guest.

– Hooks to disable/enable/check it

• CPU/CPUID/MSR/memory

– More hooks for them



Disabling devices/features

• Some of devices/features aren’t 

usable(doesn’t make sense) for memory-

protected guest

– More knobs to disable

• Twist of ACPI-table to not-report those 

devices

• Really disable them in device-emulation



Reducing attack surface

• Eliminating BIOS device initialization

• Disabling initialization only 

IO(portio/mmio)(freezing (some of )device 

state)
VM

Guest BIOS

QEMU

chipset

Initialize after power-on

VM

Guest BIOS

QEMU

chipset

Initialized on reset
Ready-to-use



Proposal to make progress

• Hooks for CPU/memory initialization/teardown
– More knobs for cpuid/MSR

• More knobs to disable device/registers if 
appropriate
– Hook for ACPI table generation

• Add after-reset hook to twist the reset status

• Allowed-list of port-IO/MMIO region which 
configurable on startup
– Instead of ad-hoc “if (enabled)” check





Removing qemu mapping to guest 

memory

• New internal structure: GPA -> HPA
– Wrapper of: get_user_pages()

– Struct file: address_space

• Update x86 kvm MMU code to use new 
interface

• Dirty page logging

• Postcopy
– Userfaultfd isn’t directly usable.

– Adds new fd with (mostly) same interface for



Reducing attack surface(cont)

• Don’t allow chipset configuration

• Qemu setup configuration and guest uses it
– No bios setup because bios is in guest

• E.g. Don’t allow to change MMCFG

– Twisting reset state

• Right now, it’s adhoc “if” clauses.

• Disabling unused devices

• BIOS: no pflash

• Additional MSR constraint
– Currently very adhoc



• Twisting reset state and freeze IO
– No changes to chipset configuration

• Disabling some devices
– E.g. legacy device(ISA devices), legacy interrupt 

controller, SMI

– Add more device configurations to disable

• Twisting ACPI
– for disabled devices

– IRQ table(only MSI)



Disabling devices

• Some devices(especially legacy one) 

should be disabled/eliminated

• There are sever


