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Agenda

• Background

➢ Static pinning in direct I/O 

➢ The problem of static pinning and of vIOMMU

➢ Motivation of DMA tracking

• Design of coIOMMU 

➢ A virtual IOMMU with cooperative DMA buffer tracking for direct I/O

• Upstream considerations
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Direct I/O

• The best performant I/O virtualization method, 

widely deployed in cloud and data centers.

• Guest directly interacts with I/O devices, 

eliminating the host intervention.

• Hardware IOMMU provides inter-guest 

protection with IOMMU page table.
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Static Pinning in Direct I/O

• Most devices do not support DMA page fault. 

➢ DMA buffers need be pinned first.

• Hypervisor has no visibility of guest DMA 

activities.
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Static Pinning in Direct I/O

• Pre-allocate and pin the entire guest memory 

before guest DMA starts:

➢ E.g. at VM creation time.
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The Problem of Static Pinning

• Much increased VM creation time:

➢ Up to 73x longer time observed for a VM with 128GB memory.

• Greatly reduced memory utilization:

➢ Prevent many memory optimizations (overcommitment, late 

allocation, swap, etc.).
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Virtual IOMMU (vIOMMU)

• Primary purpose: intra-guest protection

➢ E.g. protection with virtual DMA remapping against bogus 

guest drivers.

• Side-effect: fine-grained pinning

➢ Guest uses vIOMMU to map/unmap DMA buffers.

➢ vIOMMU requests hypervisor to pin/unpin guest DMA buffers.

• A vIOMMU could be emulated or para-virtualized.
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The Problem of vIOMMU

• Emulation cost of established vIOMMUs could be significant!

➢ E.g. 96.6% performance downgrade in memcached through 40Gbps NIC.

➢ SLA violation if forcing all tenants to turn on vIOMMU.

• Virtual DMA remapping is not used by most guest Oses.

• Users may opt in when security requirement is over performance concern. E.g.,

➢ when an untrusted device is plugged in.

➢ when a device is assigned to userspace.
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Motivation

• vIOMMU provides an architectural way for learning guest DMA buffers.

• However, mixing the requirements of protection and pinning, through the same 

costly DMA remapping interface, is needlessly constraining.

➢ Protection is an OPTIONAL guest-side requirement.

➢ Fine-grained pinning is a GENERAL host-side requirement.
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Motivation

• Decouple DMA tracking and DMA remapping in vIOMMU.

vIOMMUDMA Remapping DMA Tracking

Intra-guest Protection

Fined-grained Pinning

Guest

Hypervisor
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Motivation

• Decouple DMA tracking and DMA remapping in vIOMMU.

vIOMMUDMA Remapping DMA Tracking

Intra-guest Protection

Fined-grained Pinning

Guest

Hypervisor

Goals

➢ Orthogonal to remapping

➢ Low cost

➢ Non-intrusive

➢ Widely applicable

➢ Extensible
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Cooperative DMA Buffer Tracking

• Bi-directional shared DMA buffer information

➢ To guest – whether a page is pinned by the host.

➢ To host – whether a page is mapped by guest DMA API.

• A lightweight tracking interface for fine-grained 

pinning, when guest DMA remapping is 

disabled.

➢ Minimize VM-exits when mapping DMA pages.

➢ Eliminate VM-exits when unmapping DMA pages.

➢ Enable flexible host memory management policies.
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coIOMMU Architecture

• DMA Tracking Table (DTT)
➢ Holds shared DMA buffer info, e.g. the “pinned” / 

“mapped” status of GFNs.

• coIOMMU driver

➢ PV extension in guest IOMMU driver, which hooks 
to guest DMA API layer.

➢ Updates mapped status and checks “pinned” 
status for each GFN in DTT.

➢ Sends page pinning request to backend.

• coIOMMU backend
➢ Handles page pinning requests and updates DTT.

➢ Asynchronously unpin guest pages based on the 
“mapped” status in DTT.
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DMA Tracking Table (DTT)

• A multi-level paging structure
➢ Shared between host & guest.

➢ Indexed by GFNs.

• TU - Tracking Unit for each GFN
➢ ‘M’ (mapped) – set/cleared by guest.

➢ ‘P’ (pinned)  - set/cleared by host.

➢ ‘A’ (accessed) – set by guest, cleared by host.

• Extensible through 5 reserved bits
➢ E.g. add a ‘D’ (dirty) bit to assist dirty page 

tracking in live migration.
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Precise pinning

Set “mapped” & “accessed” 

flag

1

Pinning request

(only when “pinned” is 0)

2

Up to 99.9992% VM exits can be avoided due to DMA 

buffer locality!

Clear “mapped” flag

1

No VM exits at all!

Pin the page 

(VFIO_IOMMU_MAP_DMA )
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Lazy Unpinning

1. Asynchronously unpin the pages that are no longer “mapped”.

2. LRU based unpinning based on the “mapped” and “accessed” status.

3. Unpinned pages are reclaimable.
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DMA Tracking vs. DMA Remapping

• When DMA remapping is not used by guest (the majority case)

➢ DMA tracking is an efficient solution to achieve fine-grained pinning.

• When DMA remapping is not always enabled

➢ Guest may enable DMA remapping only for selective devices (e.g. untrusted), or only in specific period (e.g. 

when the device is assigned to userspace).

➢ However, hypervisor requires full visibility of guest DMA activities for the entire VM life-cycle.

➢ In such case, DMA tracking helps provide a reliable way for fine-grained pinning.

• When DMA remapping is always enabled for all devices

➢ Optional, no observable overhead.
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Implementation

• POC done by extending virtual VT-d:
➢ Guest Intel VT-d driver: ~900 LOC.

➢ QEMU: ~700 LOC.

• coIOMMU concept can be applied in
➢ Emulated IOMMUs.

➢ Para-virtualized IOMMUs.

• Plan to upstream based on virtio-iommu.
➢ New interfaces needed.

➢ Other logics(guest DMA tracking, host unpinning etc.) can be reusable for different vIOMMU.

New/Changed LOC

Guest Intel VT-d driver

832 new

47  changed

Host QEMU 683 new

LOC of Previous POC 
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Upstream Considerations

• New interfaces in virtio-iommu

➢ Feature negotiation - VIRTIO_IOMMU_F_PIN_PAGE (rely on VIRTIO_IOMMU_F_BYPASS).

➢ Base address of a device bitmap - bit indexed by BDF, to indicate if the device is an assigned one.

➢ Base address of DTT.

➢ virtio-iommu request: virtio_iommu_req_pin.

• Lazy unpinning

➢ A separate QEMU thread to perform the lazy unpinning periodically. 

➢ The unpinning interval can be manually configured, and an adaptive interval may be more desirable.

➢ Current unpinning policy is LRU based. More policies can be examined.
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Upstream Considerations

• Guest cooperation limitations

➢ When creating a guest, the host has no idea if coIOMMU will be enabled by the guest later.  Same 

issue exists in current vIOMMUs.

➢ Guest BIOS may use direct I/O.

➢ A selfish guest may choose to deliberately report fake DMA pages. A quota mechanism can be 

applied.

• Huge page mappings

➢ DTT currently only tracks guest pages in 4KB granularity.

➢ Backend can be optimized to conduct huge page pinning, however, will complex the lazy unpinning. 

➢ Most guest DMA workloads are not using huge page mapping(with exception of GPU workload).
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Upstream Considerations

• Sub-page mappings

➢ Multiple DMA buffers may co-locate in the same 4KB guest page (e.g. network packets).

➢ Maintain a “map count” in each DTT entry. 

• SVA capable devices 

➢ For SVA workloads, on-demand pinning is already implied by the support of IOMMU page fault.

➢ However, typical SVA capable devices need to support mixed workloads(with SVA and non-SVA 

workloads), and global configuration data structures which are not faultable.
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Performance Evaluation

• Measured on assigned devices e.g. 40Gbps NIC/NVMe

SSD/Intel GPU.

• All benchmarks show near to 100% performance 

compared with direct I/O without vIOMMU.

• Much fewer pinned guest pages. E.g.  peak pinned 

pages only ~1.3% of total guest memory(32GB).

• Much reduced VM creation time.

• Detailed environment and performance data at 

https://www.usenix.org/conference/atc20/presentation/tia
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Summary

• Established vIOMMUs cannot reliably eliminate static pinning in direct I/O.

• coIOMMU offers a reliable approach to achieve fine-grained pinning, with a cooperative DMA buffer 
tracking method.

• coIOMMU 
➢ dramatically improves the efficiency of memory management in wide direct I/O usages with negligible cost;

➢ meanwhile sustains the desired security as required in different protection usages;

➢ can be easily applied in various vIOMMU implementations.

• Call for suggestions! ☺



25

Q&A


