

October 2020, KVM Forum

Virtual Topology for VMs:
 Friend or Foe ?
Dario Faggioli <dfaggioli@suse.com>
Software Engineer - Virtualization Specialist, SUSE

1

mailto:dfaggioli@suse.com

Copyright © SUSE 20202

“In theory, there is no difference between theory and practice. But, in
practice, there is.” Jan L. A. van de Snepscheut

Alternative formulations:

● “It is virtually possible to provide the VM with a topology that
matches the physical one. But be mindful of all the potential
pitfalls”

● “Can be very good… But also a total mess! Always check
everything not two but three 3 times, and keep your finger
crossed like there is no tomorrow!”

Some Words of Wisdom...

"Wisdom" by zigazou76 is licensed under CC BY 2.0

https://en.wikiquote.org/wiki/Jan_L._A._van_de_Snepscheut
https://www.flickr.com/photos/38712296@N07/6086655772
https://www.flickr.com/photos/38712296@N07
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 2020

3

About This Talk

Copyright © SUSE 20204

This talk will be about:
1. This function of the Linux kernel scheduler:

try_to_wake_up()

“Agenda” (I)

static int
try_to_wake_up(struct task_struct *p,
 unsigned int state, int wake_flags)
{
 preempt_disable();

 raw_spin_lock_irqsave(&p->pi_lock, flags);

 trace_sched_waking(p);

 p->state = TASK_WAKING;

 cpu = select_task_rq(p, p->wake_cpu,

 SD_BALANCE_WAKE);
 ttwu_queue(p, cpu, wake_flags);

 raw_spin_unlock_irqrestore(&p->pi_lock, flags);

 preempt_enable();

 return;
}

https://elixir.bootlin.com/linux/latest/C/ident/try_to_wake_up
https://elixir.bootlin.com/linux/latest/C/ident/task_struct
https://elixir.bootlin.com/linux/latest/C/ident/preempt_disable
https://elixir.bootlin.com/linux/latest/C/ident/raw_spin_lock_irqsave
https://elixir.bootlin.com/linux/latest/C/ident/pi_lock
https://elixir.bootlin.com/linux/latest/C/ident/TASK_WAKING
https://elixir.bootlin.com/linux/latest/C/ident/select_task_rq
https://elixir.bootlin.com/linux/latest/C/ident/wake_cpu
https://elixir.bootlin.com/linux/latest/C/ident/SD_BALANCE_WAKE
https://elixir.bootlin.com/linux/latest/C/ident/SD_BALANCE_WAKE
https://elixir.bootlin.com/linux/latest/C/ident/ttwu_queue
https://elixir.bootlin.com/linux/latest/C/ident/raw_spin_unlock_irqrestore
https://elixir.bootlin.com/linux/latest/C/ident/pi_lock
https://elixir.bootlin.com/linux/latest/C/ident/preempt_enable

Copyright © SUSE 20205

This talk will be about (well, sort of…):
1. This function of the Linux kernel scheduler:

try_to_wake_up()

2. This graph

“Agenda” (II)

Copyright © SUSE 20206

This talk will be about (well, sort of…):
1. This function of the Linux kernel scheduler:

try_to_wake_up()

2. This graph

3. These messages and vulnerability status
report seen inside a Virtual Machine

“Agenda” (III)

dmesg
[...]
L1TF: System has more than MAX_PA/2 memory.
 L1TF mitigation not effective
[...]

cd /sys/devices/system/cpu/vulnerabilities
grep -H . *
Itlb_multihit: Not affected
l1tf: Vulnerable
mds: Clear CPU buffers; SMT Host state unknown
meltdown: PTI
spec_store_bypass: Speculative Store Bypass disabled
via prctl and seccomp
spectre_v1: usercopy/swapgs barriers and __user
pointer sanitization
spectre_v2: Full generic retpoline, IBPB: conditional,
IBRS_FW, STIBP: conditional, RSB filling
Srbds: Not affected
tsx_async_abort: Clear CPU buffers; SMT vulnerable

Copyright © SUSE 2020

7

Background
Concepts

"Prerequisite to pie" by cvanstane is licensed under CC BY 2.0

https://www.flickr.com/photos/22901163@N03/4161769187
https://www.flickr.com/photos/22901163@N03
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 20208

● Topology in Mathematics
“Topology (from the Greek words τόπος, 'place, location', and
λόγος, 'study') is concerned with the properties of a geometric
object that are preserved under continuous deformations,
such as stretching, twisting, crumpling and bending, but not
tearing or gluing.”

● Topology in Electrical Circuits
“The topology of an electronic circuit is the form taken by the
network of interconnections of the circuit components. [...].
Topology is not concerned with the physical layout of
components in a circuit, nor with their positions on a circuit
diagram; similarly to the mathematics concept of topology, it
is only concerned with what connections exist between the
components.”

Topology

"Topology" by bmeabroad is licensed under CC BY-NC-SA 2.0

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Topology_(electrical_circuits)
https://www.flickr.com/photos/48600099091@N01/38614937701
https://www.flickr.com/photos/48600099091@N01
https://creativecommons.org/licenses/by-nc-sa/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 20209

CPUs, caches, memory, IO devices

Topology = Organization

● Threads, cores, dies, packages, sockets
● L1, L2, L3 cache hierarchy
● NUMA nodes
● IO buses & bridges

Physical Topology

"Opening a Satellite" by jurvetson is licensed under CC BY 2.0

https://www.flickr.com/photos/44124348109@N01/6316164811
https://www.flickr.com/photos/44124348109@N01
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202010

Physical Topology

lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits
virtual
CPU(s): 224
On-line CPU(s) list: 0-223
Thread(s) per core: 2
Core(s) per socket: 28
Socket(s): 4
NUMA node(s): 4
[...]
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 39424K
NUMA node0 CPU(s): 0-27,112-139
NUMA node1 CPU(s): 28-55,140-167
NUMA node2 CPU(s): 56-83,168-195
NUMA node3 CPU(s): 84-111,196-223

Inspecting the physical (CPU & memory) topology:
● lscpu

Copyright © SUSE 202011

Physical Topology

numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 15 16 17 18 19 20 21 22 23 48 49 50
 51 52 53 54 55 56 57 58 59 60 61 62
 63 64 65 66 67 68 69 70 71
node 0 size: 31849 MB
node 0 free: 24587 MB
node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35
 36 37 38 39 40 41 42 43 44 45 46 47
 72 73 74 75 76 77 78 79 80 81 82 83
 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 32240 MB
node 1 free: 31640 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

Inspecting the physical (CPU & memory) topology:
● lscpu
● numactl --hardware

Copyright © SUSE 202012

Physical Topology

cd /sys/devices/system/cpu

cat cpu0/topology/package_cpus_list
0-27,112-139
$ cat cpu0/topology/core_siblings_list
0-27,112-139
$ cat cpu0/topology/core_cpus_list
0,112
$ cat cpu/cpu0/topology/thread_siblings_list
0,112

cat cpu0/cache/index0/level
1
cat cpu0/cache/index1/type
Instruction
cat cpu0/cache/index2/ways_of_associativity
16
cat cpu0/cache/index3/type
Unified
cat cpu0/cache/index3/shared_cpu_list
0-27,112-139

Inspecting the physical (CPU & memory) topology:
● lscpu
● numactl --hardware
● Linux sysfs interfaces

Copyright © SUSE 202013

Inspecting the physical (CPU & memory) topology:
● lscpu
● numactl --hardware
● Linux sysfs interfaces
● lstopo, from Portable Hardware Locality

Physical Topology

https://www.open-mpi.org/projects/hwloc/

Copyright © SUSE 202014

Topology of a Virtual Machine

Try these same tools when inside a VM:
● lscpu
● numactl --hardware
● Linux sysfs interfaces
● lstopo, from Portable Hardware Locality

⇒ They all work!
● And give similar output than on Bare Metal

⇒ You’re looking at the Virtual Topology

"Virtual Reality Demonstrations" by
UTKnightCenter is licensed under CC BY 2.0

https://www.open-mpi.org/projects/hwloc/
https://www.flickr.com/photos/34802210@N05/16569546384
https://www.flickr.com/photos/34802210@N05
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202015

Virtual Topology

"Euler's battlecruiser 1" by shonk is licensed under CC BY 2.0

It’s created for the VM by the hypervisor and the tools
(e.g., KVM, QEMU and Libvirt)

● Two VMs on the same hardware, can have different
virtual topologies

● A (across reboot) change its topology

How does this work?
● The user specifies what he/she wants

○ Sockets, Core x Socket, Threads x Core
○ NUMA nodes
○ NUMA distances
○ ...

● The tools prepare the virtual hardware (virtual ACPI
tables, CPUID, …)

● The guest kernel query the topology, like it were on a
baremetal system

● Result is the requested Virtual Topology

https://www.flickr.com/photos/35356228@N00/120793037
https://www.flickr.com/photos/35356228@N00
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202016

Virtual Topology: Examples

 <vcpu placement="static">8</vcpu>
 <cpu mode="host-passthrough" check="none">
 <topology sockets="8" dies="1" cores="1" threads="1"/>
 </cpu>

● Default Topology

Copyright © SUSE 202017

Virtual Topology: Examples

 <vcpu placement="static">8</vcpu>
 <cpu mode="host-passthrough" check="none">
 <topology sockets="1" dies="1" cores="4" threads="2"/>
 </cpu>

● With Cores and Threads

Copyright © SUSE 202018

Virtual Topology: Examples

 <vcpu placement="static">8</vcpu>
 <cpu mode="host-passthrough" check="none">
 <topology sockets="1" dies="1" cores="4" threads="2"/>
 <numa>
 <cell id='0' cpus='0-3'
 memory='2048' unit='MiB'>
 <distances>
 <sibling id='0' value='10'/>
 <sibling id='1' value='21'/>
 </distances>
 </cell>
 <cell id='1' cpus='4-7'
 memory='2048' unit='MiB'>
 <distances>
 <sibling id='0' value='21'/>

 <sibling id='1' value='10'/>
 </distances>
 </cell>
 </numa>
 </cpu>

Copyright © SUSE 202019

Huge benefits come from a “Topology Aware” OS
The scheduler is a typical example:

● Don’t run tasks on CPUs that share computational
resources, if possible (SMT aware scheduling)

○ ⇒ improves performance
● Run tasks on the NUMA node where the memory they

use is (NUMA aware scheduling)
○ ⇒ improves scalability

● Task load balancing done hierarchically, through
scheduling domains mapped on the topology

○ ⇒ improves scalability
● Pack tasks on CPUs sharing power domains, so other

CPUs can be put into low power state (Power aware
scheduling)

○ ⇒ improves efficiency

Topology & Performance

"Odd Future Performing" by Incase. is licensed under CC BY 2.0

https://www.flickr.com/photos/62021300@N00/8048737270
https://www.flickr.com/photos/62021300@N00
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202020

Did I hear “Performance” ?

Copyright © SUSE 202021

The OS in the VM is aware of the Virtual Topology
● SMT aware guest scheduler, in VM1:

○ Virtual CPU v0 from virtual core v-core0
is busy running task t1

○ Where should I run t2, in order to avoid having
two physical threads busy at the same time, if
possible?

Virtual Topology & Performance

v-core0
v0 v1

v-core0
v2 v3

t1

VM1

t2 ?

"Question" by ryanvanetten is
licensed under CC BY-SA 2.0

Icons by Smashicons and Payungkead @ www.flaticon.com

https://www.flickr.com/photos/39179985@N07/27103127305
https://www.flickr.com/photos/39179985@N07
https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=rich
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/payungkead
http://www.flaticon.com

Copyright © SUSE 2020 p-core022

● Depends on what physical CPUs v0, v1, v2 and v3 run
○ No way to tell (from the VM)
○ Changes over time

● Depends on what host tasks run on p0, p1, p2, p3,
p4, p5 and p6

○ No way to tell (from the VM)
○ Changes over time

⇒ Is there even hope ?!?

⇒ Isn’t it better to just NOT define
 a Virtual Topology ?

Virtual Topology & Performance

v0 v1 v2 v3

p0 p1

p-core0
p2 p3

p-core0
p4 p5

p-core0
p6 p7

t1

t2

Copyright © SUSE 202023

Resource Partitioning

What if, instead, relationship between virtual and physical CPUs were:
● Well defined
● Constant over time (e.g., for

the lifetime of the VMs)
I.e.:

● v1_0 always runs on p0
● v1_1 always runs on p1
● v1_2 always run on p2
● v1_3 always run on p3
● v2_0 always run on p4
● v2_1 always run on p5
● v2_2 always run on p6
● v2_3 always run on p5 p-core0

p0 p1

p-core0
p2 p3

p-core0
p4 p5

p-core0
p6 p7

v1_0 v1_1 v1_2 v1_3

VM1 VM2
v2_0 v2_1 v2_2 v2_3

Copyright © SUSE 2020

What if, instead, relationship between virtual and physical CPUs were:
● Well defined
● Constant over time (e.g., for

the lifetime of the VMs)

Now a Virtual Topology that matches
the underlying Physical Topology makes
sense

● In-VM scheduler decisions are valid
● They’re ~ like they’d have been done

on the host

v-core2_0 v-core2_1v-core1_1v-core1_0

24

Resource Partitioning

p-core0
p0 p1

p-core0
p2 p3

p-core0
p4 p5

p-core0
p6 p7

v1_0 v1_1 v1_2 v1_3

VM2
v2_0 v2_1 v2_2 v2_3

VM1

Copyright © SUSE 202025

Dedicated Resource Partitioning

Resource Partitioning:
● v1_0 runs only on p0
● v1_1 runs only on p1
● v1_2 runs only on p2
● v1_3 runs only on p3

What about p0, p1, p2, p3 ?
1. Do they also only run v1_0, v1_1, v1_2 and v1_3 ?

Or can also other vCPUs from other VMs run there?
2. Can they run the vCPUs, but also host tasks?

v-core1_1v-core1_0

p-core0
p0 p1

p-core0
p2 p3

v1_0 v1_1 v1_2 v1_3

VM1

Copyright © SUSE 202026

Dedicated Resource Partitioning

What about p0, p1, p2, p3 ?
1. Do they also only run v1_0, v1_1, v1_2 and v1_3 ?

Or can also other vCPUs from other VMs run there?
● If only vCPUs of VM1 can run on them, we are doing

dedicated resource partitioning for our VMs

2. Can they run the vCPUs, but also host tasks?
● If yes, VM1 will incur in some interference. It is probably

still fine and we can consider this ~ dedicated partitioning,
If host load is low and interference is rare

v-core1_1v-core1_0

p-core0
p0 p1

p-core0
p2 p3

v1_0 v1_1 v1_2 v1_3

VM1

Copyright © SUSE 2020

27

Virtual Topology:
State of the Union

Copyright © SUSE 202028

Shall I Define a Virtual Topology for my VM ?

Start

Will you do
dedicated
resource

partitioning ?

End

NoYes

Copyright © SUSE 2020

Resource Partitioning is enacted via vCPU pinning
● Can be done in Libvirt
● For each vCPU, we specify on which Physical CPU(s) it can run on
● We specify on which physical NUMA node(s) of the the

memory should be allocated on

29

Virtual CPU & Memory Pinning

 <vcpu placement="static">8</vcpu>
 <cputune>
 <vcpupin vcpu="0" cpuset="36"/>
 <vcpupin vcpu="1" cpuset="84"/>
 <vcpupin vcpu="2" cpuset="37"/>
 <vcpupin vcpu="3" cpuset="85"/>
 </cputune>
 <numatune>
 <memory mode="strict" nodeset="1"/>
 </numatune> "pins" by hydropeek is licensed under CC BY 2.0

https://www.flickr.com/photos/39265075@N00/494387381
https://www.flickr.com/photos/39265075@N00
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 2020

● Establishing a 1 to 1 mapping between Real and
Virtual Topology and doing the pinning can be cumbersome

● QEMU follow a specific order
○ E.g.: 2 cores, 2 threads:

■ vCPU 0 and 1 → virtual core 1, as threads
■ vCPU 2 and 3 → virtual core 2, as threads

● Physical CPUs
○ IDs can be sparse

30

Virtual Topology & CPU Pinning

NUMA node0 CPU(s): 0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120
NUMA node1 CPU(s): 2,10,18,26,34,42,50,58,66,74,82,90,98,106,114,122
NUMA node2 CPU(s): 4,12,20,28,36,44,52,60,68,76,84,92,100,108,116,124
NUMA node3 CPU(s): 6,14,22,30,38,46,54,62,70,78,86,94,102,110,118,126
NUMA node4 CPU(s): 1,9,17,25,33,41,49,57,65,73,81,89,97,105,113,121
NUMA node5 CPU(s): 3,11,19,27,35,43,51,59,67,75,83,91,99,107,115,123
NUMA node6 CPU(s): 5,13,21,29,37,45,53,61,69,77,85,93,101,109,117,125
NUMA node7 CPU(s): 7,15,23,31,39,47,55,63,71,79,87,95,103,111,119,127

<cputune>
 <vcpupin vcpu='0' cpuset='0'/>
 <vcpupin vcpu='1' cpuset='64'/>
 <vcpupin vcpu='2' cpuset='8'/>
 <vcpupin vcpu='3' cpuset='72'/>
 <vcpupin vcpu='4' cpuset='16'/>
 <vcpupin vcpu='5' cpuset='80'/>
 <vcpupin vcpu='6' cpuset='24'/>
 <vcpupin vcpu='7' cpuset='88'/>
 <vcpupin vcpu='8' cpuset='32'/>
 <vcpupin vcpu='9' cpuset='96'/>
 <vcpupin vcpu='10' cpuset='40'/>
 <vcpupin vcpu='11' cpuset='104'/>
 <vcpupin vcpu='12' cpuset='48'/>
 <vcpupin vcpu='13' cpuset='112'/>
 <vcpupin vcpu='14' cpuset='56'/>
 <vcpupin vcpu='15' cpuset='120'/>
 <vcpupin vcpu='16' cpuset='2'/>
 <vcpupin vcpu='17' cpuset='66'/>
 [...]

Copyright © SUSE 2020

E.g., for a 4 vCPUs VM:
● All vCPUs as sockets ⇒ flat

○ No relationship / dependencies
between vCPUs

● No sharing, not even caches
○ Not so common in hardware

31

Default Virtual Topology

v0 v2 v3
VM

v0

RAM

cache

Copyright © SUSE 2020

32

try_to_wake_up()
In some details...

"Detailed 757 cockpit overhead panel with notes" by Fly For Fun is
licensed under CC BY 2.0

https://www.flickr.com/photos/57518661@N00/2291522570
https://www.flickr.com/photos/57518661@N00
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202033

In the Linux kernel, try_to_wake_up() is called when a task that was
blocked or sleeping, wants to run again
1. The wake-up of the task (E.g., t1) happens on a CPU,

the wakeup CPU (e.g., p0)
2. The task needs to be put in a runqueue,

the target runqueue (E.g., p1_rq or p2_rq)
3. The target CPU is informed about the new task

a. If the target CPU is idle, the task runs
b. If the target CPU is busy, it checks for preemption

Waking Up Tasks

"Wakeup, smurf!" by Willem Cantor is licensed under
CC BY-SA 2.0

https://www.flickr.com/photos/81324599@N00/3322214763
https://www.flickr.com/photos/81324599@N00
https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202034

In the Linux kernel, try_to_wake_up() is called when a task that was
blocked or sleeping, wants to run again
1. The wake-up of the task (E.g., t1) happens on a CPU,

the wakeup CPU (e.g., p0)
2. The task needs to be put in a runqueue,

the target runqueue (E.g., p1_rq or p2_rq)
3. The target CPU is informed about the new task

a. If the target CPU is idle, the task runs
b. If the target CPU is busy, it checks for preemption

Waking Up Tasks

p0 p2

t1
(1)

(2)

p2_rq

(3a)

To p2

(3)

p1p1_rq

Copyright © SUSE 2020

To p1

35

In the Linux kernel, try_to_wake_up() is called when a task that was
blocked or sleeping, wants to run again
1. The wake-up of the task (E.g., t1) happens on a CPU,

the wakeup CPU (e.g., p0)
2. The task needs to be put in a runqueue,

the target runqueue (E.g., p1_rq or p2_rq)
3. The target CPU is informed about the new task

a. If the target CPU is idle, the task runs
b. If the target CPU is busy, it checks for preemption

Waking Up Tasks

p0 p1

t1
t2(1)

(2)

p1_rq

(3b)

p2p2_rq

Copyright © SUSE 202036

try_to_wake_up() deals with the topology:
● p0 (wakeup CPU) and p2 (target CPU), share an L3 cache; p2 is idle
● p2’s runqueue structure belongs (and will likely be) in the L3 cache

trace-cmd record function_graph -g try_to_wake_up -g *resched* -e sched_waking -e reschedule_entry
 -e sched_wake_idle_without_ipi

[p0] try_to_wake_up()

[p0] comm=t1 prio=120 target_cpu=p2

[p0] ttwu_queue(p, cpu)

[p0] if (cpus_share_cache(p0, p2))

[p0] ttwu_do_activate()

[p0] enqueue_task_fair();

[p0] ttwu_do_wakeup()

[p0] check_preempt_curr()

[p0] resched_curr()

[p0] sched_wake_idle_without_ipi: cpu=p2

The Topology of a Wake-up

p0 p2

t1

NB: ftrace traces are slightly modified, for making them easier to show in the slides

Copyright © SUSE 202037

try_to_wake_up() deals with the topology:
● p0 (wakeup CPU) and p2 (target CPU), share an L3 cache; p2 is idle
● p2’s runqueue structure belongs (and will likely be) in the L3 cache

trace-cmd record function_graph -g try_to_wake_up -g *resched* -e sched_waking -e reschedule_entry
 -e sched_wake_idle_without_ipi

[p0] try_to_wake_up()

[p0] comm=t1 prio=120 target_cpu=p2

[p0] ttwu_queue(p, cpu)

[p0] if (cpus_share_cache(p0, p2))

[p0] ttwu_do_activate()

[p0] enqueue_task_fair();

[p0] ttwu_do_wakeup()

[p0] check_preempt_curr()

[p0] resched_curr()

[p0] sched_wake_idle_without_ipi: cpu=p2

The Topology of a Wake-up

p0 p2p1_rq

t1

Copyright © SUSE 202038

try_to_wake_up() deals with the topology:
● p0 (wakeup CPU) and p2 (target CPU), share an L3 cache; p2 is idle
● p2’s runqueue structure belongs (and will likely be) in the L3 cache

trace-cmd record function_graph -g try_to_wake_up -g *resched* -e sched_waking -e reschedule_entry
 -e sched_wake_idle_without_ipi

[p0] try_to_wake_up()

[p0] comm=t1 prio=120 target_cpu=p2

[p0] ttwu_queue(p, cpu)

[p0] if (cpus_share_cache(p0, p2))

[p0] ttwu_do_activate()

[p0] enqueue_task_fair();

[p0] ttwu_do_wakeup()

[p0] check_preempt_curr()

[p0] resched_curr()

[p0] sched_wake_idle_without_ipi: cpu=p2

The Topology of a Wake-up

p0 p2p1_rq

t1

Copyright © SUSE 202039

try_to_wake_up() deals with the topology:
● p0 (wakeup CPU) and p3 (target CPU), do not share an L3 cache; p3 is idle
● p3’s runqueue structure does not belong in p0’s L3 cache

trace-cmd record function_graph -g try_to_wake_up -g *resched* -e sched_waking -e reschedule_entry
 -e sched_wake_idle_without_ipi

[p0] try_to_wake_up()

[p0] comm=t1 prio=120 target_cpu=p3

[p0] ttwu_queue(p, cpu)

[p0] if (cpus_share_cache(p0, p3));

[p0] ttwu_queue_wakelist()

[p3] sched_wake_idle_without_ipi: cpu=p3

[p3] sched_ttwu_pending()

[p3] ttwu_do_activate()

[p3] enqueue_task_fair();

The Topology of Another Wake-up

p0 p2

t1

p3

Copyright © SUSE 202040

try_to_wake_up() deals with the topology:
● p0 (wakeup CPU) and p3 (target CPU), do not share an L3 cache; p3 is idle
● p3’s runqueue structure does not belong in p0’s L3 cache

trace-cmd record function_graph -g try_to_wake_up -g *resched* -e sched_waking -e reschedule_entry
 -e sched_wake_idle_without_ipi

[p0] try_to_wake_up()

[p0] comm=t1 prio=120 target_cpu=p3

[p0] ttwu_queue(p, cpu)

[p0] if (cpus_share_cache(p0, p3));

[p0] ttwu_queue_wakelist();

[p3] sched_wake_idle_without_ipi: cpu=p3

[p3] sched_ttwu_pending()

[p3] ttwu_do_activate()

[p3] enqueue_task_fair();

The Topology of Another Wake-up

p0 p2

t1

p3

wakelist

Copyright © SUSE 202041

try_to_wake_up() deals with the topology:
● p0 (wakeup CPU) and p3 (target CPU), do not share an L3 cache; p3 is idle
● p3’s runqueue structure does not belong in p0’s L3 cache

trace-cmd record function_graph -g try_to_wake_up -g *resched* -e sched_waking -e reschedule_entry
 -e sched_wake_idle_without_ipi

[p0] try_to_wake_up()

[p0] comm=t1 prio=120 target_cpu=p3

[p0] ttwu_queue(p, cpu)

[p0] if (cpus_share_cache(p0, p3));

[p0] ttwu_queue_wakelist();

[p3] sched_wake_idle_without_ipi: cpu=p3

[p3] sched_ttwu_pending()

[p3] ttwu_do_activate()

[p3] enqueue_task_fair();

The Topology of Another Wake-up

p0 p2 p3

wakelist

t1

Copyright © SUSE 202042

try_to_wake_up(),
with a Virtual Topology

Copyright © SUSE 202043

try_to_wake_up() was all about whether the waking and target CPU share caches.
● The same logic is triggered when a task wakes up on a vCPU
● Do virtual CPUs share caches?

○ Before QEMU commit target-i386: present virtual L3 cache info for vcpus , no!
■ L3 was not part of the virtual topology!

○ Now? Depends on the actual Virtual Topology
■ L3 is there. But is it shared?

Virtual Topology and Wake-ups in VMs

v0 v2 v3

All vCPUS as
sockets (default
topology):
No vCPU share
the L3 with any
other ones

v0 v0 v2 v3v0

All vCPUS as
cores (for
instance)
All vCPUs share
the same L3

https://patchwork.kernel.org/project/qemu-devel/patch/1472713085-13192-1-git-send-email-longpeng2@huawei.com/

Copyright © SUSE 202044

try_to_wake_up() in action in a VM:
● p0 (wakeup CPU) and p2 (target CPU), do not share an L3 cache (they never do, by default!)
● p2 is idle

 [p0] try_to_wake_up()
(1) [p0] sched_waking: comm=t1 prio=120 target_cpu=p2
(2) [p0] ttwu_queue_wakelist()
 [p0] native_smp_send_reschedule()
(3) [p0] x2apic_send_IPI();
 [p2] smp_reschedule_interrupt()
 [p2] reschedule_entry: vector=253
 [p2] scheduler_ipi()
(4) [p2] sched_ttwu_pending()
 [p2] ttwu_do_activate()
 [p2] enqueue_task_fair();
 [p2] ttwu_do_wakeup()
 [p2] check_preempt_curr()
(5) [p2] resched_curr();

Tracing Wake-ups in VMs

wakelist

(1)

(2)

(3)

(4)

(5)

t1

Copyright © SUSE 202045

try_to_wake_up() in action in a VM:
● p0 (wakeup CPU) and p2 (target CPU), do not share an L3 cache (they never do, by default!)
● p2 is busy

 [p0] try_to_wake_up()
(1) [p0] sched_waking: comm=t1 prio=120 target_cpu=p2
(2) [p0] ttwu_queue_wakelist()
 [p0] native_smp_send_reschedule()
(3) [p0] x2apic_send_IPI();
 [p2] smp_reschedule_interrupt()
 [p2] reschedule_entry: vector=253
 [p2] scheduler_ipi()
(4) [p2] sched_ttwu_pending()
 [p2] ttwu_do_activate()
 [p2] enqueue_task_fair();
 [p2] ttwu_do_wakeup()
(5) [p2] check_preempt_curr()
 [p2] resched_curr();

Tracing Wake-ups in VMs

wakelist

(1)

(2)

(3)

(4)

(5 ?)t1

t2

Pretty m
uch the same!

Copyright © SUSE 2020

try_to_wake_up() in action in a VM:
● p0 (wakeup CPU) and p2 (target CPU), share an L3 cache (defined like that in the Virtual Topology)
● p2 is idle

 [p0] try_to_wake_up()
(1) [p0] sched_waking: comm=t1 prio=120 target_cpu=p2
 [p0] ttwu_queue_wakelist();
 [p0] ttwu_do_activate()
(2) [p0] enqueue_task_fair();
 [p0] ttwu_do_wakeup()
 [p0] check_preempt_curr()
 [p0] resched_curr()
 [p0] native_smp_send_reschedule()
(3) [p0] x2apic_send_IPI();
 [p2] smp_reschedule_interrupt()
 [p2] reschedule_entry: vector=253
(4) [p2] scheduler_ipi();

46

Tracing Wake-ups in VMs

(1)

(2)

(3)

(4)

t1

Copyright © SUSE 2020

try_to_wake_up() in action in a VM:
● p0 (wakeup CPU) and p2 (target CPU), share an L3 cache (defined like that in the Virtual Topology)
● p2 is busy

 [p0] try_to_wake_up()
(1) [p0] sched_waking: comm=t1 prio=120 target_cpu=p2
 [p0] ttwu_queue_wakelist();
 [p0] ttwu_do_activate()
(2) [p0] enqueue_task_fair();
 [p0] ttwu_do_wakeup()
 [p0] check_preempt_curr()
 [p0] resched_curr()
 [p0] native_smp_send_reschedule()
(3) [p0] x2apic_send_IPI();
 [p2] smp_reschedule_interrupt()
 [p2] reschedule_entry: vector=253
(4) [p2] scheduler_ipi();

47

Tracing Wake-ups in VMs

(1)

(2)

(3)

(4)

t1

t2

Pretty m
uch the same!

(1)

(3)

t1

Copyright © SUSE 2020

try_to_wake_up() in action in a VM:
● p0 (wakeup CPU) and p2 (target CPU), share an L3 cache (defined like that in the Virtual Topology)
● p2 is busy & t2 has higher priority than t1

 [p0] try_to_wake_up()
(1) [p0] sched_waking: comm=t1 prio=120 target_cpu=p2
 [p0] ttwu_queue_wakelist();
 [p0] ttwu_do_activate()
(2) [p0] enqueue_task_fair();
 [p0] ttwu_do_wakeup()
 [p0] check_preempt_curr()
 [p0] check_preempt_wakeup()

 [p0] wakeup_preempt_entity()

⇒ We saved an IPI !!
● We avoided disturbing p2 and t2 too much
● In the “no shared L3 configuration” we send the IPI

48

Tracing Wake-Ups in VMs

(1)

(2)
t1

t2

(3)

Copyright © SUSE 202049

For real benefits:
● Virtually shared caches == Really shared caches
● It does not need to be static 1-to-1 resource partitioning

Is Virtual Good… For Real ?

This is Ok

Copyright © SUSE 202050

For real benefits:
● Virtually shared caches == Really shared caches
● It does not need to be static 1-to-1 resource partitioning

Is Virtual Good… For Real ?

This is also Ok

Copyright © SUSE 202051

For real benefits:
● Virtually shared caches == Really shared caches
● It does not need to be static 1-to-1 resource partitioning

Is Virtual Good… For Real ?

This is not Ok

Copyright © SUSE 202052

For making sure that vCPUs that share
caches run on pCPUs that share caches:

● We don’t necessarily need static
resource partitioning

● We don’t necessarily need 1-to-1
vCPU to pCPU pinning

● We need each VMs to “stick” to
some “shared cache domain” on
the host (e.g., NUMA nodes)

Theory: with a decently reliable virtual
to physical cache sharing relationship is,
we will see benefits from cache sharing
topologies

Cache Sharing Consistency

VM1
VM2

VM3 VM4 VM5

Copyright © SUSE 202053

“Knock, Knock.”
“Who’s There?”
 “It’s Benchmarks!”

Copyright © SUSE 202054

Host:
● Xeon(R) Platinum 8260L CPU @ 2.40GHz
● 64 GB RAM, 96 CPUs (2 Sockets, 24 Cores, 2 Threads)
● openSUSE Leap 15.2
● Libvirt and QEMU from latest upstream

VMS:
● 1, 4, 12 and 18 VMs running concurrently

○ 12 VMs run: saturate the host CPUs
○ 18 VMs run: overload

● 4 GB RAM, 8 vCPUs
● openSUSE Leap 15.2

Benchmarking Suite:
● MMTests

Benchmarking Setup

"Sentinel Benchmark" by NOAA's National Ocean Service is
licensed under CC BY 2.0

https://lwn.net/Articles/820823/
https://www.flickr.com/photos/40322276@N04/3750089814
https://www.flickr.com/photos/40322276@N04
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202055

● Hackbench
○ Scheduler benchmark, groups of message passing tasks

■ Threads communicating over pipes
■ Processes communicating over pipes
■ Processes communicating over sockets

○ Number of groups:
■ 1, 3, 5, 7, 12, 18, 24, 30, 32

○ Measures the wake-up latency
● Perfpipe

○ Basically perf bench sched pipe (based on Ingo Molnar pipe-test-1m.c)
○ 2 processes, ping-pong messages over a pipe for thousands loops
○ Measures total durations

● Schbench
○ Message passing between clients / server:

■ 1 server
■ 1, 2, 4, 7 clients

○ Measures 99.0-th percentile of wake-up latency

Benchmarks Used

https://people.redhat.com/mingo/cfs-scheduler/tools/pipe-test-1m.c

Copyright © SUSE 202056

● default
○ No pinning at all
○ All vCPUs of all VMs are free to move around all pCPUs

● Numad
○ “Automatic” vCPU and memory placement, done via numad
○ No explicit pinning, but numad should limit cross-NUMA node movement

● perNODE
○ Each VM were pinned to a node
○ All vCPUs of the VM were pinned to all pCPUs of the node (no 1-to-1)
○ Odd VMs, node 0. Even VMs, node 1

● 1-to-1
○ Classic static resource partitioning approach
○ Each vCPU was pinned to 1 pCPU
○ No two vCPUs pinned to the same pCPU

■ (skipped the run with 18 VMs)

Benchmarked Configuration

Copyright © SUSE 202057

● 8 sockets
○ Default topology
○ Each vCPU was a socket
○ No cache sharing between any vCPU

Benchmarked Topologies

Copyright © SUSE 202058

● 8 cores - 1 thread
○ All vCPUs are cores of one unique socket
○ They all share an L3 cache
○ No (virtual) hyperthreading

Benchmarked Topologies

Copyright © SUSE 202059

● 4 cores - 2 threads
○ All vCPUs are part of one unique socket
○ They are arranged in 4 cores
○ Each core has 2 threads

Benchmarked Topologies

Copyright © SUSE 202060

● 8 sockets
○ Default topology
○ Each vCPU was a socket
○ No cache sharing between any vCPU

● 8 cores - 1 thread
○ All vCPUs are cores of one unique socket
○ They all share an L3 cache
○ No (virtual) hyperthreading

● 4 cores - 2 threads
○ All vCPUs are part of one unique socket
○ They are arranged in 4 cores
○ Each core has 2 threads

Benchmarked Topologies

When all the vCPUs run on the
same node, Virtual and Real
cache sharing matches

Copyright © SUSE 202061

● 8 sockets
○ Default topology
○ Each vCPU was a socket
○ No cache sharing between any vCPU

● 8 cores - 1 thread
○ All vCPUs are cores of one unique socket
○ They all share an L3 cache
○ No (virtual) hyperthreading

● 4 cores - 2 threads
○ All vCPUs are part of one unique socket
○ They are arranged in 4 cores
○ Each core has 2 threads

Benchmarked Topologies

When doing 1-to-1 vCPU pinning,
we achieve static & dedicated
resource partitioning with
matching topology

Copyright © SUSE 202062

Hackbench

Copyright © SUSE 202063

Benchmarks Results
- Hackbench

Copyright © SUSE 202064

Benchmarks Results
- Hackbench

Copyright © SUSE 202065

Benchmarks Results
- Hackbench

Copyright © SUSE 202066

Benchmarks Results
- Hackbench

Copyright © SUSE 202067

Benchmarks Results
- Hackbench

Copyright © SUSE 202068

Schbench

Copyright © SUSE 202069

Benchmarks Results
- Schbench

Copyright © SUSE 202070

Benchmarks Results
- Schbench

Copyright © SUSE 202071

Perfpipe

Copyright © SUSE 202072

Benchmarks Results
- Perfpipe

Copyright © SUSE 202073

Benchmarks Results
- Perfpipe

Copyright © SUSE 2020

74

Disturbing Graphs
(More of Them!)

Copyright © SUSE 202075

After tuning, we expected comparable STREAM
performance in Host and VM

● Accomplished for Scale, Add,
Triadd operations

● Why Copy is different?
● Why the VM is faster?

STREAM Quality Degraded

https://www.cs.virginia.edu/stream/

Copyright © SUSE 202076

After tuning, we expected comparable STREAM
performance in Host and VM

● Accomplished for Scale, Add,
Triadd operations

● Why Copy is different?
● Why the VM is faster?

After some serious head-scratching, we found this:
perf stat -e r44B ./stream

⇒ code for PREFETCHNTA instr. being used
● Host: 0 events
● VM: 125213413 events

STREAM Quality Degraded

https://www.cs.virginia.edu/stream/

Copyright © SUSE 202077

STREAM Copy Op:
● memcpy() across 3 arrays, 763 MB each
● Total memory 2289 MB
● 128 threads (configurable)

Glibc memcpy() implementation [*]
● (L3_cache_size / nr_cores + L2_cache_size) * 4 = K

○ If copying more than K bytes
■ ⇒ use PREFETCHNTA

○ If copying less than K bytes
■ ⇒ do not use PREFETCHNTA

(Virtual) Topology role starting to become clear…

STREAM Copy Op Dissected

"Wind River Stream" by Kylir is licensed under CC BY 2.0

[*] behavior of glibc 2.22. Newer versions may use different heuristics

https://www.gnu.org/software/libc/
https://www.flickr.com/photos/67635079@N00/10602463485
https://www.flickr.com/photos/67635079@N00
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202078

Baremetal:
● 64 cores, L3 cache is 64 MB

○ (64 MB / 64 + 512 KB) * 4 = 1.5 MB * 4 = 6 MB
● Each memcpy()

○ Array size / nr_threads
○ 763 MB / 128 ~= 5.96 MB < 6 MB

● ⇒ does not use PREFETCHNTA

VM:
● 64 cores, L3 cache is 16 MB (QEMU’s default)

○ (16 MB / 64 + 512K) * 4 = 0.75 MB * 4 = 3 MB
○ 763 MB / 128 ~= 5.96 MB > 3 MB

● ⇒ uses PREFETCHNTA

Virtual Topology & Cache (Again!)

Copyright © SUSE 202079

In this case, “fix” is easy
● <cache mode='passthrough'/>
● “Let’s make the VM slow again!” ;-P

But in general:
● With ‘mode=emulate’ , we may have VMs with

lots of vCPUs, but really small caches
○ E.g., (as in this case): 128 vCPUs, 16 MB L3

● With ‘mode=passthrough’ , we may have small VMs
with just a few vCPUS, and gigantic caches

○ E.g., a 2 vCPUs VM on this
host: 2 vCPUs, 64 MB L3

⇒ Does this calls for adding mechanisms for specifying
the cache hierarchy in details in the Virtual Topology?

Too Big or Too Small Caches

Copyright © SUSE 202080

Topology That Makes
 you Vulnerable?

Copyright © SUSE 202081

Once upon a time, in a ~2.7 TB VM
● Check mitigations:

Itlb_multihit: Not affected
l1tf: Vulnerable
[...]

● Check dmesg:
L1TF: System has more than MAX_PA/2 memory.
 L1TF mitigation not effective

● Check lscpu
Address sizes: 42 bits physical, 48 bits virtual

● Check dmesg again
BIOS-e820: [mem 0x0000000100000000-0x000002b57fffffff] usable

How Many Engineers Bits Does It Take To...

"Changing Lightbulbs" by shareski is licensed under CC
BY-NC 2.0

https://www.flickr.com/photos/91312924@N00/14705721078
https://www.flickr.com/photos/91312924@N00
https://creativecommons.org/licenses/by-nc/2.0/?ref=ccsearch&atype=rich
https://creativecommons.org/licenses/by-nc/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202082

The Problem:
● e820 ends at 0x2b57fffffff ⇒ needs more than 41 bits

○ MAX_PA is on 42 bit
○ MAX_PA/2 (for PTE inversion, for L1TF) is 41 bits

● Too much memory for too few bits (host has 46)
○ The kernel informs us that we may be vulnerable
○ (We’re fine! But still, it’s annoying)

Solution:
● Give the guest more bits

○ Same as the host (as we’re using host-passthrough CPU
model)

00000000-0x000002b57fffffff] usable

How Many Engineers Bits Does It Take To...

</devices>
 <qemu:commandline>
 <qemu:arg value='-cpu'/>
 <qemu:arg value='host,host-phys-bits=on'/>
</qemu:commandline>

Hack-ish… Working
 on patches

"Changing Lightbulbs" by shareski is licensed under CC
BY-NC 2.0

https://www.flickr.com/photos/91312924@N00/14705721078
https://www.flickr.com/photos/91312924@N00
https://creativecommons.org/licenses/by-nc/2.0/?ref=ccsearch&atype=rich
https://creativecommons.org/licenses/by-nc/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 2020

83

Conclusions

Copyright © SUSE 202084

● Topology, Physical and Virtual, has probably
more of an impact that what you would
expect

● Software algorithms, thresholds and
optimizations are done thinking to real
existing hardware. Let’s keep this in mind
and work on Virtual Topology, or it will bite
us (again!)

● Maybe there are benefits in using Virtual
Topology in VMs, even when we don’t have
statical and dedicated resource partitioning

Conclusions

”Handshakes” by Ron Cogswell is licensed under CC BY 2.0

https://www.flickr.com/photos/22711505@N05/22827718534
https://www.flickr.com/photos/22711505@N05
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Copyright © SUSE 202085

● Ph.D on Real-Time Scheduling, soft real-time scheduling in
Linux SCHED_DEADLINE

● 2011, Sr. Software Engineer @ Citrix The Xen-Project,
hypervisor internals, NUMA-aware scheduler, Credit2
scheduler, Xen scheduler maintainer

● 2018, Virtualization Software Engineer @ SUSE
Xen, KVM, QEMU, Libvirt; core-scheduling,
performance evaluation & tuning

● Mail: <dfaggioli@suse.com>
Twitter: @DarioFaggioli
IRC: dariof

Dario Faggioli

https://about.me/dario.faggioli

mailto:dfaggioli@suse.com
https://twitter.com/DarioFaggioli
https://about.me/dario.faggioli

86

Thank you!

Questions?

© 2020 SUSE LLC. All Rights Reserved.
SUSE and the SUSE logo are registered trademarks of
SUSE LLC in the United States and other countries.
All third-party trademarks are the property of their
respective owners.

For more information, contact SUSE at:
+1 800 796 3700 (U.S./Canada)
+49 (0)911-740 53-0 (Worldwide)

SUSE
Maxfeldstrasse
90409 Nuremberg

www.suse.com

