SPEED UP CREATION OF AVMWITH PASSTHROUGH GPU

AGENDA

= Background

= |ssues

= Solutions

= Effect of optimizations

= Conclusion

BACK GROUND

= CPUVM instance
= A virtual machine without any passthrough device
= GPUVM instance
= A virtual machine with one or more passthrough GPU cards
= Creation time of aVM instances with the 256G RAM
= CPUVM instance: several Seconds
= GPUVM instance: several Minutes
= |mpact of a longVM creation time
= Poor user experience

= Computing resources waste

)12 e}
BASE LINE DATA

® Some definitions

= VM Creation time VM creation time (Unit: Second)

® The time interval between QEMU process start to
execute and guest kernel start to run

= VM initialization time

® The time interval between QEMU process start to
execute and VCPU start to run

= BIOS execution time

= The time interval between VCPU start to run and the first
guest kernel log is printed

® Factors affect GPUVM creation time

= RAM size of VM n

= Type of GPU card 3 —n_lilL

VM INITIALIZATION BIOS EXECUTION VM CREATION

B Count of GPU cards 248G RAM m48G RAM+ IxP40 = 48G RAM + 4xP40 = 192G RAM + 4xP40

LLl
@,
Z
<
(V)
Z
>
>
D)
(a1
O
<
L
O
Z
O
e
LLl
(o'
@,
$
O
A
<
@,
—
(V)
Z
1
<

Flame Graph

—miBEBEE
- = e - "
— .
— - =]
I. [2
""'-”
e HCTTE
< I S~ d S ") _ V D. D. O O
——— | |
o)
(]
o
|«l||||“|“'

- BE<EEREE: --
— d o
======mE ...

.

—==uengn @@ = BB -
———====s=zumanll_
. \|mumu|-- --

l

C
P
||||| premfommng lc
I Hmnn_m-
- ———-===-EE; ,.—
=s_ EnENLNEOE_EE_ mlm l-m --
=== = |.P

Il kvm_cpu_exec

[unknown]

| _ioctl

WHAT SLOW DOWN CREATION OF A GPUVM INSTANCE

® Function * vfio_pin_pages remote’ is slow

= Repeated VFIO DMA map (unmap) for the same IOVA area
= PCI device reset

= KVM management meta data initialization

® Other miscellaneous configuration

SPEED UP VFIO_ PIN_PAGES REMOTE

= Why " vfio_pin_pages _remote’ is slow ?
m Zero out physical memory when allocating pages is time consuming

= solution: Pre zero out free pages

" Page per page process is inefficiency because of too many page table accessing

= solution: Pin memory in bulk

PRE ZERO OUT FREE PAGES

= Details of implementation
= Based on ‘free page reporting
m Zero out operation is done in a kernel worker thread
® Set PG_zero flag in struct page when page content is zeroed out
" Check PG_zero flag first if zero out is needed, skip zero out operation when set
" PG_zero flag is cleared and zero out worker is woken up when a page is freed

m RFC patch set: https://lore.kernel.org/lkml|/20200412090728.GA 19572@open-light- | .localdomain/

https://lore.kernel.org/lkml/20200412090728.GA19572@open-light-1.localdomain/

PIN MEMORY IN BULK

= Details of implementation

Add a new get_user_ct_page() and a new
‘get_user_ct_pages_longterm()’ to kernel mm

New semantics
= Try to pin the specified pages in the same VMA

= Return information about a bulk of physical continues
memory

Use ‘get_user_ct page’ and
‘get_user_ct_pages_longterm’ in 'vaddr_get_pfn’
to pin a bulk of memory

Use huge page will take more benefits

ElEk=

start

v6 v7

v0

b L L

pg0 | pgl |pg2 |pg3 |pgd |pgS |pgbd | pgbd

ret = get user pages longterm (start, 5, write, force, pages, vmas);

pages bl ret

pgl vmal

pg2 vmal --5
pg4 vma2

pg3 vma2

pgs vma?2

ret = get user ct pages longterm (start, 5, write, force, pages, vmas);

pages vmas ret

MAKEVFIO DMA MAP MORE EFFICIENT

= Current issues
= Repeated vfio dma map and vfio dma unmap for the same IOVA area
= Updating a part of an mapped IOVA area need to unmap the whole IOVA first and then redo the map
® Solutions
= Manage VFIO DMA MAP in user space
= Maintain VFIO DMA MAP IOVA information in QEMU

® Do not do VFIO_IOMMU_UNMAP_DMA ioctl in vfio_dma_unmap, only do it when map a conflict IOVA area
® Left the cleanup work which did by VFIO_IOMMU_UNMAP_DMA ioctl to kernel when QEMU process terminates

= Split IOVA area which contain the address of 0x100000 before vfio dma map
= One part is below 0x 100000, which will be remapped

= One part is above 0x 100000, which keeps unchanged if the lower part get updated

PCI RESET OPTIMIZATION

® Current issues

® One PCI device reset takes about | second

" The same PCI device was reset twice duringVM . N — Pci dev Pcidev [l Pcidev
creation serialize map | reset 2 reset n reset

o ‘ reset: Time
= Oneisin 'gemu_system_reset

= Another inVFIO_GROUP_GET_DEVICE_FD ioctl

»

parallel vfio dma
" PCI devices reset operations are serialized reset: map

Pci dev |
reset

= Solutions Pci dev 2

= Remove the redundant PCl device reset neset

® Do PCI device reset operations in parallel when

there are multiple passthrough devices Pci dev n
reset

® Make PCI device reset in parallel with vfio dma
map

KVM META DATA OPTIMIZATION

® Current issues

= Dirty page bitmap initialization for PCl device MMIO is time consuming and useless

= EPT entries’ D bit should be set when PML is enabled, rmap traversal is time consuming

= Solutions

= Skip PCI MMIO dirty page log related processing

" Make the rmap traversal more efficient

= Count the effective rmap, skip rmap traversal if the memory slot has no effective rmap items

CONFIGURATION OPTIMIZATION

= Current issues

= BIOS boot menu has 2.5 seconds of timeout by default

® Guest grub has user defined timeout

" Improper NUMA strategy will slow down page allocation
= Solutions

= Disable boot menu

= Change guest grub timeout to 0

= Be careful with the NUMA memory policy

Z
O
<
N
>
—
(ol
O
L
O
—
O
L
TH
TH
L

e— kLA - . ----——

—— s — e e c— e— - . mm
e re—aa i m
Q w
% o
o C

- blkc

——— | |
=== k-s _-

mmm-.”}mmm.wn

Flame Graph

CPU_1/KVM

pu_ioctl

|
\
\
|
| |l
I
N
Il
i
I |
A |
]
I SR
el N
vepu_e.. |
kvm_arch_..
| do_vfs_ioctl

18] kvm_vcpu_i..
kvm_vc|

) system_call

EFFECT OF OPTIMIZATION

40000

35000

30000

25000

20000

15000

10000

5000

15068

Main QEMU functions accumulated time cost comparison(Unit: ms)

34911

6346
316
209 0 - 182 55
R Q S >
& & ,bb 2
Q/ 0(\ . OQ/ '\OQ
bﬁo ({\'b/ ?JQ(\, (@Qo
j\\o 7/ IS @j Q& /
&7 ¢ ¢

@ Before optimization @ After optimization

30208

45
40
35
30
25
20

10

(O}

EFFECT OF OPTIMIZATION

24.5
159 157 13.6
- .7
48 47
27 21 21 g4 04 03
| e

VM initialization
BP40,THP off
@mP40,THP on

P40, THP on + boot menu off
@mP40,THP on + boot menu off +

P40, THP on + boot menu off +
@mP40,THP on + boot menu off +
@P40,THP on + boot menu off +
@mP40,THP on + boot menu off +
@mP40,THP on + boot menu off +

GPU VM instance creation time (unit: second, 48GB RAM)

BIOS execution

Free page pre zero out

Free page pre zero out + vfio dma map optimization

98 gg
55 56
36

2.5 [-9 08
B = —

Free page pre zero out + vfio dma map optimization + PCl reset optimization

Free page pre zero out + vfio dma map optimization + dirty page log optimization

38.1

27.6

255

13.4
10.2
8.3 64
5.7 .
4.6 33
T s
e

VM creation

Free page pre zero out + vfio dma map optimization + dirty page log optimization + grub timeout optimization

Free page pre zero out + vfio dma map optimization + dirty page log optimization + grub timeout optimization + pin memory optimization

B CPU instance before optimization

@ CPU instance after optimization

EFFECT OF OPTIMIZATION

45

40

35

30

25

20

Creation time of GPU VM instance with |
GPU card (unit: second)

38.1

245

33
.4 1.9
—— [-

VM initialization

BIOS execution VM creation

m48G RAM + IxP40 (before optimization) m48G RAM + IxP40 (after optimization)

120

80

60

40

20

Creation time of GPU VM instance with 4
GPU cards (unit: second)

118

90

28

2.5 1.9 4.4
I I _
VM initialization

BIOS execution VM creation

m [92G RAM +4xP40 (before optimization) m 192G RAM + 4xP40 (after optimization)

2 18] 5

CONCLUSION

= All the optimizations are not limited to GPU passthrough device, they apply to other PCI
passthrough devices too.

= Limitations of pre zero out free page

" Hugetlb fs can’t always benefit from current implementation

® Page allocation speed remains the same when pages were not zeroed out in time
= Pros

= Transparent to guest

= DMA operation in BIOS stage can be handled correctly
= TODO

= About GPUVM creation time, there is some room for further improvement
® Linux memory management can be improved for device passthrough scenario

= Contribute our work to upstream

THANKS

Liang Li <liliang324@gmail.com>

] BiEES

