SPEED UP CREATION OF AVMWITH PASSTHROUGH GPU
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BACK GROUND

= CPUVM instance
= A virtual machine without any passthrough device
= GPUVM instance
= A virtual machine with one or more passthrough GPU cards
= Creation time of aVM instances with the 256G RAM
= CPUVM instance: several Seconds
= GPUVM instance: several Minutes
= |mpact of a longVM creation time
= Poor user experience

= Computing resources waste
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®  Some definitions

= VM Creation time VM creation time (Unit: Second)

®  The time interval between QEMU process start to
execute and guest kernel start to run

= VM initialization time

®  The time interval between QEMU process start to
execute and VCPU start to run

= BIOS execution time

= The time interval between VCPU start to run and the first
guest kernel log is printed

®  Factors affect GPUVM creation time

= RAM size of VM n

= Type of GPU card 3 —n_lilL

VM INITIALIZATION BIOS EXECUTION VM CREATION

B Count of GPU cards 248G RAM m48G RAM+ IxP40 = 48G RAM + 4xP40 = 192G RAM + 4xP40
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WHAT SLOW DOWN CREATION OF A GPUVM INSTANCE

®  Function * vfio_pin_pages remote’ is slow

= Repeated VFIO DMA map (unmap) for the same IOVA area
= PCI device reset

= KVM management meta data initialization

®  Other miscellaneous configuration



SPEED UP VFIO_ PIN_PAGES REMOTE

= Why " vfio_pin_pages _remote’ is slow ?
m  Zero out physical memory when allocating pages is time consuming

= solution: Pre zero out free pages

" Page per page process is inefficiency because of too many page table accessing

= solution: Pin memory in bulk



PRE ZERO OUT FREE PAGES

= Details of implementation
= Based on ‘free page reporting
m  Zero out operation is done in a kernel worker thread
®  Set PG_zero flag in struct page when page content is zeroed out
" Check PG_zero flag first if zero out is needed, skip zero out operation when set
" PG_zero flag is cleared and zero out worker is woken up when a page is freed

m  RFC patch set: https://lore.kernel.org/lkml|/20200412090728.GA 19572@open-light- | .localdomain/



https://lore.kernel.org/lkml/20200412090728.GA19572@open-light-1.localdomain/

PIN MEMORY IN BULK

= Details of implementation

Add a new get_user_ct_page() and a new
‘get_user_ct_pages_longterm()’ to kernel mm

New semantics
= Try to pin the specified pages in the same VMA

= Return information about a bulk of physical continues
memory

Use ‘get_user_ct page’ and
‘get_user_ct_pages_longterm’ in 'vaddr_get_pfn’
to pin a bulk of memory

Use huge page will take more benefits

ElEk=

start
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ret = get user pages longterm (start, 5, write, force, pages, vmas);

pages bl ret
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pgs vma?2
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MAKEVFIO DMA MAP MORE EFFICIENT

= Current issues
= Repeated vfio dma map and vfio dma unmap for the same IOVA area
= Updating a part of an mapped IOVA area need to unmap the whole IOVA first and then redo the map
®  Solutions
= Manage VFIO DMA MAP in user space
= Maintain VFIO DMA MAP IOVA information in QEMU

® Do not do VFIO_IOMMU_UNMAP_DMA ioctl in vfio_dma_unmap, only do it when map a conflict IOVA area
®  Left the cleanup work which did by VFIO_IOMMU_UNMAP_DMA ioctl to kernel when QEMU process terminates

= Split IOVA area which contain the address of 0x100000 before vfio dma map
= One part is below 0x 100000, which will be remapped

= One part is above 0x 100000, which keeps unchanged if the lower part get updated



PCI RESET OPTIMIZATION

®  Current issues

®  One PCI device reset takes about | second

" The same PCI device was reset twice duringVM . N — Pci dev Pcidev [l Pcidev
creation serialize map | reset 2 reset n reset

o ‘ reset: Time
= Oneisin 'gemu_system_reset

= Another inVFIO_GROUP_GET_DEVICE_FD ioctl

»

parallel vfio dma
" PCI devices reset operations are serialized reset: map

Pci dev |
reset

= Solutions Pci dev 2

= Remove the redundant PCl device reset neset

® Do PCI device reset operations in parallel when

there are multiple passthrough devices Pci dev n
reset

®  Make PCI device reset in parallel with vfio dma
map



KVM META DATA OPTIMIZATION

®  Current issues

= Dirty page bitmap initialization for PCl device MMIO is time consuming and useless

= EPT entries’ D bit should be set when PML is enabled, rmap traversal is time consuming

= Solutions

= Skip PCI MMIO dirty page log related processing

" Make the rmap traversal more efficient

= Count the effective rmap, skip rmap traversal if the memory slot has no effective rmap items



CONFIGURATION OPTIMIZATION

= Current issues

= BIOS boot menu has 2.5 seconds of timeout by default

®  Guest grub has user defined timeout

" Improper NUMA strategy will slow down page allocation
= Solutions

= Disable boot menu

= Change guest grub timeout to 0

= Be careful with the NUMA memory policy
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EFFECT OF OPTIMIZATION
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EFFECT OF OPTIMIZATION
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CONCLUSION

= All the optimizations are not limited to GPU passthrough device, they apply to other PCI
passthrough devices too.

= Limitations of pre zero out free page

"  Hugetlb fs can’t always benefit from current implementation

®  Page allocation speed remains the same when pages were not zeroed out in time
= Pros

= Transparent to guest

= DMA operation in BIOS stage can be handled correctly
= TODO

= About GPUVM creation time, there is some room for further improvement
®  Linux memory management can be improved for device passthrough scenario

= Contribute our work to upstream
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