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Project Goals
• Live migration pain points

• VMs with memory write intensive workloads are difficult to migrate
• VMs with large memory size takes long time to migrate
• May consume large network bandwidth

• Existing solution: compression with CPUs
• Slow
• Consumes too many CPUs from host

• Our solution
• Offload the compression part to Intel QAT with efficient approaches

• Higher migration throughput
• Lower CPU utilization

• A common design ready for future more accelerators to join in
• Data Streaming Accelerator (DSA) and Intel Analytics Accelerator (IAX) coming 

on Sapphire Rapids CPUs
• Smart Selection



Architecture Introduction



Source Machine
• Migration Setup
• Preparation for migration, 

including the accelerator device 
initialization, device polling thread 
creation

• Page Searching
• Searching for pages to process and 

send
• Smart Selection
• Select an appropriate accelerator 

based on the history of the 
acceleration efficiency

• Request Dispatch
• Dispatch requests to the related 

accelerator device instance, e.g. in 
a round robin fashion if there are 
multiple device instances

• Response Polling
• Poll for responses from all 

the devices
• Blocks when no responses 

are ready
• Data Transfer
• Send the compressed 

data, along with the 
related header, to network



Destination Machine

• Page Receiving
• Receive data from the network
• Parsing the migration protocols, 

e.g. multi-page
• Accelerator Selection
• The received data has headers 

to tell which accelerator to use

• Response Polling
• Poll for decompressed 

data from each device
• Blocks when no 

responses are ready
• Decompressed data DMA 

to the QEMU memory



Feature Introduction



Important Features
• Zero-copy

• Allow the acceleration device to directly access to the guest(QEMU) 
memory

• Multi-page Processing
• Support the whole migration flow to process multiple pages each time

• Acceleration Request Caching
• Caching the acceleration request data structure for efficient memory 

allocation



Zero-copy
• Migration setup

• Pre-alloc and pin all the QEMU memory
• Destination side memory unpinned when migration is done

• Request Composing
• Source side

• DMA read buffer points to QEMU memory
• DMA write buffer allocated via accelerator lib

• Destination side
• DMA read buffer allocated via accelerator lib
• DMA write buffer points to QEMU memory



Multi-page Processing
source machine



Multi-page Processing
destination machine



Acceleration Request Caching
• Device Setup

• Pre-allocate some amount of acceleration requests and fill them into 
the cache pool

• Request Composing
• Take requests from the cache pool first
• Initialize the request based on the new pages to send

• Response Polling
• Free the request to the cache pool after it’s processed



Test Results



Test Environment
• Testbed

• CPU: Intel Xeon CPU E5-2699 V4 @2.2GHZ
• QAT: 8960 PCIe card, Gen3
• DRAM: DDR4, 2666MHZ
• NIC: XL710, 40GB

• Live migration
• Downtime: 300 ms (default)
• Network bandwidth: No limit (i.e. 40G)
• Compress level: 1
• Multi-page: 63 (Max)

• Guest
• 4 vCPUs, 32G RAM, running a workload writing compression-friendly data
• 4 vCPUs, 32G RAM, running a workload writing sequence numbers 
• 8 vCPUs, 128G RAM, running memcached with reading/writing random numbers



Memory Dirty with Compress-Friendly Data
• Run in guest: ./dirty_workload –t 10 –i 500000 –m 1 1000 –s

• Write “1”s in specified dirty rate (e.g. 1000 MB/s above)

No 
Compression

16 CPU 
Compression

QAT 
Compression

Throughput
(Pages per Second

* 10000)

17 ~ 29 39 ~ 50 133 ~ 138

Largest Migratable 
Dirty Rate

(MB/s)

1100 1900 5000

Extra CPU 
Utilization

(%)

No 678 < 40

Compression Ratio No 87.6 922
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Memory Dirty with Sequence Numbers
• Run in guest: ./dirty_workload –t 10 –i 500000 –m 3 1000 –s

• Write sequence data in specified dirty rate (e.g. 1000 MB/s above)

No 
Compression

16 CPU 
Compression

QAT 
Compression

Throughput
(Pages per Second

* 10000)

17 ~ 29 ~19 81~116

Largest Migratable 
Dirty Rate

(MB/s)

1100 700 4200

Extra CPU 
Utilization

(%)

No 1600 < 70

Compression Ratio No 4.97 4.81
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Memcached with Random Numbers
• Memcached Server

• 16 servers, each with 4GB RAM
• Memslap Client 

• 16 threads,16 concurrency
• Set/Get ratio 9:1
• key length 128 bytes, value length 2048 bytes

No 
Compression

16 CPU 
Compression

QAT 
Compression

Throughput
(Pages per Second * 

10000)

18 ~ 22 7 ~ 10 48 ~ 53

Migration Time
(second)

Infinite Infinite 60

Dirty Sync Count Infinite Infinite 10

Compression Ratio No 1.6 1.6
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• VM fails to be migrated in the “no compression” and “cpu compression” cases, and successfully migrated with 
QAT acceleration



Future Works



VFIO Driver based Zero-Copy

• Current Zero-copy is implemented based on the UIO based QAT driver
• Requires QEMU to be root privilege to get VA-to-PA mappings via pagemap
• Requires QEMU to pin its memory

• VFIO supports the above with QEMU running with non-root privilege
• QAT’s VFIO based userspace driver and library are work in progress



Smart Acceleration Support

• DSA compares the dirty memory, and sends the “diff” to the destination only
• Good when the guest only modifies a small part of a page
• Bad when the entire pages are changed

• Smart Acceleration
• Dynamically switch to use QAT/IAX compression or DSA diff during live 

migration using a prediction based on the compression ratio history and diff 
ratio history
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