
Evaluate implementation options of
KVM-based Type1 (or 1.5) hypervisor

Jun Nakajima

Contributors:
Chuanxiao Dong, Anthony Xu

@twitter

Legal Disclaimers
• Intel provides these materials as-is, with no express or implied warranties.
• All products, dates, and figures specified are preliminary, based on current expectations, and are

subject to change without notice.
• Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata,

which may cause the product to deviate from published specifications. Current characterized errata are
available on request.

• Intel technologies' features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Performance varies depending on system configuration. No
product or component can be absolutely secure. Check with your system manufacturer or retailer or
learn more at http://intel.com.

• Some results have been estimated or simulated using internal Intel analysis or architecture simulation
or modeling and provided to you for informational purposes. Any differences in your system hardware,
software or configuration may affect your actual performance.

• Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
• *Other names and brands may be claimed as the property of others.
© Intel Corporation 2020

2

Agenda

• Motivation
• Implementation Options
• PoC
• Performance Data
• Our Conclusion
• Next Step

Security Risks of Linux/KVM Guests

• KVM piggybacks on Linux
– More attack surfaces, making guests more

exposed…
• Full access by user-space VMM
• Full access by KVM/Linux Kernel

– To any guest VM memory, vCPU states, etc.

*: From presentation last KVM Forum: “Manage Session Enhancing KVM for Guest Protection and Security”

https://kvmforum2019.sched.com/event/Tmvt/enhancing-kvm-for-guest-protection-and-security-jun-nakajima-intel-corp

Motivation of Type 1.5 Hypervisor

• Separate Hypervisor functionality from Linux
– Linux handles I/O and user processes
– Hypervisor is responsible for isolation

• Thus needs to be trusted

• If trusted, hypervisor can create secure
environment
– TEE (Trusted Execution Environment)
– Trusted VMs

Converting KVM to Type 1.5

Linux Kernel

User-level

KVM

VMs

Maintain: I/O passthrough

H/W

Linux Kernel

User-level

KVM (L1)

VMs (L2)

H/W

Hypervisor (L0)

VMs (L1)

I/O

Domain 0 (Dom0)

Two Extremes

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Linux Kernel KVM (L0)
Hypervisor

Common: I/O passthrough

OS functionality (scheduler, memory mgmt, etc.)
Mini-conf Linux/KVM
Boots first and separately

Deprivilege Linux for isolation
Reactive (no scheduler)
Can be loaded by Linux

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Lightweight Hypervisor (L0)

Dom0

User-level VMM for Dom0 e.g. QEMU

Linux/KVM Hypervisor
• Pros

– Unmodified guests on L1
– Benefits from Linux/KVM

• Cons
– Higher latency to Dom0

• Scheduling, VM exits
– Still big (e.g. TCB)

• Maybe we can deal with it…
– Virtio for guests
– Power management (PM)?

• Who should manage power for CPUs
and platform

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Linux Kernel KVM (L0)

H/W

Dom0

User-level VMM for Dom0 e.g. QEMU

I/O and PM?

Dom0: Scheduling and PM Issues
• Hypervisor needs to own VM

scheduling
– Intercept HLT/MWAIT in Dom0

• Inefficient for clients:
– Two-level scheduling

• VM-level and process-level (within
VM)

– Unexpected latencies in VMs,
especially Dom0

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Linux Kernel KVM (L0)

User-
level

H/W

HLT/MWAIT

Dom0

User-level VMM for Dom0 e.g. QEMU

Impacts of Linux/KVM Hypervisor

• How to create VMs?
– Need to invoke QEMU process

on the host from Dom0 (a
guest)

• E.g. Nitro Enclaves driver

• Virtio
– No I/O devices are available in

hypervisor
– Only memory filesystem

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Linux Kernel KVM (L0)

H/W

User-level VMM for Dom0 QEMU virtio
Hypervisor

Lightweight Hypervisor
• Pros

– Same code path of bare-metal
Linux/KVM

– Low latency & overhead
• No VM exits if dom0 behaves legitimately

– Small TCB
• Cons

– Limited L1 VM types
• E.g. no virtual devices support

– L2 for Unmodified guests
• Overhead compared with L1?

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Lightweight Hypervisor (L0)

H/W

I/O and PM

Dom0

Enclaves

Optimization for KVM Guests
• Optimized nested virtualization

using VMCS shadowing
– Passthrough shadow VMCS (for

most fields) in L1
– Convert shadow VMCS to real

VMCS quickly (flip one bit)
• KVM 1st level Entry Point

– Fast VM entry/exit if exit handling
doesn’t require Linux services

– Allow KVM VMs to run as L1

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Lightweight Hypervisor (L0)

Optimized Nesting KVM 1st Level
Entry Point

Fast VM exit/entry

Optimized Nested Virtualization

L0 VMM

L1 VMM

L2 VM

VM Exit

VM Resume

VM Exit

L0 VMM

L1 VMM

L2 VM

VM Exit

VM Resume

VMCS

Shadow
VMCS VMCS

*: Bit 31: shadow-VMCS indicator in VMCS region

Shadow
VMCS VMCS

Copy/Sync

Flip the bit*

Optimized L2 VM exit/entryCurrent Implementation

PoC: Lightweight Hypervisor by extending VBH
• Original VBH* (Virtualization Based Hardening)

– Deprivileges Linux kernel to harden the kernel (Dom0)
• With all I/O and APIC passthrough

• Added simple nested virtualization to run KVM guests (L2)
– Only for L1 VM (bare-metal VM, where GPA = HPA)
– Implemented optimized VMCS shadowing, virtual EPT for isolation

• Added a feature to run a simple L1 VM in TEE
– E.g. OP-TEE OS**

• Working on virtual IOMMU

**: https://github.com/OP-TEE/optee_os

*: From presentation KVM Forum 2019:
“Manage Session Virtualization Based Hardening: Securing Container Workloads and Beyond”

Comparing Performance 1/2

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Linux Kernel KVM (L0)
Hypervisor

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Lightweight Hypervisor (L0)

Dom0

User-level VMM for Dom0 e.g. QEMU

KVM L2 LH L2

KVM L2 and LH L2
Kernel Build L2 VM Exit Breakdown

Hypervisor VM Exit: L2->L1 L1 Handler VM Entry :L1->L2 Total Improvement Contribution

External Interrupt

Linux/KVM 27172 147345 12058 186575 Total Improvement:40%
L1<->L2 Switch:47%
Handler:53%LH 2418 108332 1087 111838

IO_INSTRUCTION

Linux/KVM 17362 483317 26788 526570 Total Improvement:87%
L1<->L2 Switch:9%
Handler:91%LH 540 63745 925 65211

MSR WRITE

Linux/KVM 18175 67198 17674 103047 Total Improvement:77%
L1<->L2 Switch:43%
Handler:57%LH 956 21358 721 23036

PREEMPTION_TIMER Linux/KVM 46058 215206 27750 289015 Total Improvement:91%
L1<->L2 Switch:28%
Handler:72%LH 1768 27610 744 30123

Improvements
from flipping shadow-VMCS indicator

Comparing Performance 2/2

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Linux Kernel KVM (L0)
Hypervisor

Linux Kernel (L1)

User-level

KVM

VMs
(L2)

VMs
(L1)

Lightweight Hypervisor (L0)

Dom0

User-level VMM for Dom0 e.g. QEMU

KVM L1

LH L2

Comparing KVM L1 and LH L2 Guest
(without KVM 1st Level Entry Point) LH L2 and KVM L1 is almost equivalent

Benchmark KVM L1 LH L2 LH L2 vs. KVM L1

Kernel compiling
Unit: second

348.3 353
98.67%

Iperf
Unit: Gb/sec
(Between VM and underlining VMM)

41.2 37.16

90.19%
FIO seq read
Unit: MB/s

515.8 471.2
91.35%

FIO seq write
Unit: MB/s

279.2 232.4
83.24%

FIO rand read
Unit: MB/s

256.8 226.6

88.24%
FIO rand write
Unit: MB/s

219 182
83.11%

Sysbench CPU
Unit: events per second

4623.66 4609.03
99.68%

Sysbench CPU
Unit: MiB/sec

8218.38 8207.89
99.87%

Findings from PoCs

• Linux/KVM Hypervisor has structural impacts:
– Large structural changes to resource management

• Scheduling, power management, VM management
– Virtio implementation
– It would require different efforts to optimize/tune

• Beyond current Linux/KVM

• Lightweight Hypervisor
– LH L2 and KVM L1 is almost equivalent

• I/O needs more optimization

Our conclusion
• Lightweight (reactive) Hypervisor approach is more

suitable for the current Linux/KVM to make it more
secure (Type 1.5 VMM)
– Same code path as bare-metal Linux/KVM, including

scheduling and power management, etc.
– Low latency & overhead

• VBH-based Hypervisor can harden Dom0 kernel and
guests additionally

• KVM guests run with minimal overhead
• Advantage when implementing TEE because of small

TCB

Next Step

• Finish VBH-based PoC
– Complete IOMMU virtualization

• For direct I/O support in secure environment
– Optimize KVM guest performance more

• I/O performance (e.g. write operations)
• KVM 1st Level Entry Point in VBH

• Share the code
– github

