
KVM Live Upgrade with Properly
Handling of Passthrough Devices

Zhimin Feng

Agenda

• Background

• How to handle the passthrough devices

• Downtime Optimization

• Achievements

Background

Background

Add security patches and new features:
• kernel live patching.

 cannot handle complex changes

• Virtual Machine (VM) live migration.

 incur unacceptable long delays

Background

VMM live upgrade:
• add security patches and new features.

• upgrade the whole VMM (KVM & QEMU) without interrupting customer VMs.

Background

Interrupts handling is difficult for passthrough devices during live upgrade.

Minimizing service downtime is the major concern of cloud providers.

Handle
the passthrough devices

Live upgrade - framework
 Divide KVM module to multiple modules.
 New QEMU inherits vfio connector from Old QEMU.
 The VM’s memory is shared by the new and old QEMU processes.

QEMU1

KVM.ko

user space
kernel space

/dev/kvm1

kvm_intel_1.ko

QEMU2

kvm_intel_2.ko

/dev/kvm2

Replaceable

Non-Replaceable

/dev/vfio
/dev/vfio/grp

Replaceable

Passthrough device
Handling Passthrough device is difficult during live upgrade.
 Passthrough device cannot be suspended.

Existing Solution

 New QEMU Inherits vfio eventfds from old QEMU.

 New QEMU reads from the eventfd and receives the pending

interrupts

 Inject an additional virtual irq into the VM.

Our solution - framework
 VT-d Posted-Interrupts Support.
 Pi_desc is shared between New QEMU and old QEMU.
 Interrupts is consistency between New QEMU and old QEMU.

Old QEMU

New QEMU

new qemu
binary

save vm
state

load vm
state

fork

exec
MEM

Pi_desc

Shared

Our solution
Alloc Pi_desc structure

allocated memory for Pi_desc structure in QEMU

QEMU

KVM

user space

kernel space

Pi_desc

Ioctl

Alloc

QEMU

KVM

user space

kernel space

Ioctl

Pi_desc
Alloc

Pi_desc

Our solution
Initialize Pi_desc data

 New QEMU does not initialize the pir data.

 New QEMU does not sync the pir from Old QEMU.

 New QEMU does not update the Interrupt Remapping Table.

Downtime Optimization

Downtime optimization
Live upgrade flow diagram
 Downtime phase
suspend

save state

 load state

startup

Old QEMU New QEMU

fork+exec
init QEMU

suspend

load statesave state

shutdown

startup

Downtime optimization
Suspend optimization(Old QEMU)

 Don't cleanup eventfds for virtio devices.

Suspend

kick VCPU

stop Devices

kill QEMU

Live Upgrade
Success

device_stop

device_stop_one

while (total_queues)

cleanup eventfd

Downtime optimization
Startup optimization(New QEMU)

 Create eventfds for virtio devices during QEMU initialization.

Startup

resume
VCPU

start Devices

device_start

device_start_one

while (total_queues)

create eventfd

Init QEMU

Startup

resume
VCPU

start Devices

create
eventfd

Init QEMU device_start

device_start_one

while (total_queues)

create eventfd

Downtime optimization
Save/Load state:
Using shared memory to save/load vm state.

Loading state in the new QEMU happens concurrently with saving state in the

old QEMU.

Achievements

Downtime

8 vcpu, 16GB RAM, 2 Cloud Disk(100GB, 200GB), Mellanox Technologies MT27800.
64 vcpu, 128GB RAM, 2 Cloud Disk(100GB, 200GB), Mellanox Technologies MT27800.
88 vcpu, 350GB RAM, 2 Cloud Disk(100GB, 200GB), Mellanox Technologies MT27800.

Workload:
 idle
cpu_stress
memtester
 fio:

Downtime

VM workload: idle
 vcpu downtime: 11ms ~ 34ms

Downtime

VM Workload: stress -c 4
 vcpu downtime: 12ms ~ 34ms

Downtime

VM Workload: memtester 4G
 vcpu downtime: 12ms ~ 34ms

Downtime

VM Workload: fio --filename=/mnt/test.data --iodepth=1 --rw=randwrite
 --bs=4k --size=40G

 vcpu downtime: 12ms ~ 38ms

Thank You

Contact Info：fengzhimin@bytedance.com

