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Agenda

• PASID Recap

• Usages

– PASID in Shared Virtual Addressing (SVA)

– PASID in Intel® Scalable IOV

• PASID Management



PASID Recap

• PASID (Process Address Space ID)

– Defined by PCIe* spec

– DMA remapping happens at RID & PASID granularity

• IOMMU PASID Table

– Per-device table by hardware design.

– Storage in virtualization environment (Nested Translation[1])
• Intel® VT-d: maintained by host

• ARM* SMMUv3, AMD* IOMMU: maintained by guest

[1] https://static.sched.com/hosted_files/kvmforum2018/52/kvm-forum-vSVA-yliu-jpan-jean-eric.pdf 



PASID in SVA

Device

Kernel

Device

Driver

App

IOMMU

Driver

devices

devices
Physical

device

Native Virtualization (Intel® VT-d)

PASID 

program

ming Device

Host

QEMU

Guest

VFIO/IOMMU

Driver

devices

devices
Physical

device

PASID 

program

ming

Flush

PASID

cache

Alloc

gPASID

Alloc

PASID

Bind

gPASID

Setup

Nested

Translation

Bind

process

Bind

mm

Alloc

PASID

Bind

PASID

Could be binding guest PASID 
table per vendor support



PASID in Intel® Scalable IOV
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• Default PASID of auxiliary 

domain
– Each ADI (Assignable Device 

Interface[1]) has a default PASID

– Assigned once attached to an 

auxiliary IOMMU domain[1]
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[1] https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Hardware-Assisted-Mediated-Pass-Through-with-VFIO-Kevin-Tian-Intel.pdf

PASID is I/O Address Space ID



SVA & Scalable IOV
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• PASID programming for PF
– PASIDs from guest are 

programmed to hardware directly

• PASID programming for ADI
– PASIDs from guest are 

converted to host PASIDs and 

then programmed to hardware

– Intel® ENQCMD instruction can 

do PASID Translation in 

hardware
• “Scalable Work Submission in Device 

Virtualization - Hao Wu, Intel”

https://kvmforum2020.sched.com/event/eE4d/scalable-work-submission-in-device-virtualization-hao-wu-intel?iframe=no


PASID Management w/ IOASID Core

IOASID is a generic kernel library (since v5.5) for 

managing PASIDs

• Guest-Host PASID Mapping

• Partitioning & Namespaces

• Synchronization/Notifications

• Lifecycles



Guest-Host PASID Mapping

1. Shadow guest PASID table (Intel VT-d SM®)

– Requires G-H PASID translation (H-PASID != G-PASID)

– Requires host PASID backing of each guest PASID

– Requires system-wide host PASID namespace due to shared workqueues (SWQ) (i.e. a single SWQ 

assigned to two VMs, the backing host PASIDs must be unique)

– PASID programming on PF assignment is NOT mediated, guest PASID is programmed. Potential conflict 

with ADIs on the same VM if guest PASID bind and PRS not enforced.

2. Bind guest PASID table (ARM SMMU® v3)

– PASID namespace can be per VM since host IOMMU walks guest PASID table

– Host doesn’t care about guest PASIDs

Requirements for #1 is a superset of #2!
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Synchronization among IOASID Users

https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html

https://software.intel.com/content/www/us/en/develop/download/intel-data-streaming-accelerator-preliminary-architecture-specification.html
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Lifecycles: A PASID’s life
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Normal order:

1. Init (per VM)
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Status

• Opens
– Should we expose IOAPID allocation via VFIO 

or a new standalone UAPI?

– How can user manage IOASID 
accounting/quota? Rlimit and Cgroup seem 
too heavy

• Patchsets
– https://lkml.org/lkml/2020/9/28/1186

– https://lore.kernel.org/linux-iommu/5dd95fbf-054c-3bbc-e76b-
2d5636214ff2@redhat.com/T/



Summary

• DMA remapping is at RID & PASID granularity

• PASID is managed as I/O Address Space ID (IOASID) in Linux

• System-wide host PASID is chosen to support requirements from 

all vendors

• Guest has its own PASID namespace

• PASIDs can have multiple users with hardware context association

• Notifications and reference counting are used to manage lifecycles




