
PASID Management in

KVM

Yi Liu yi.l.liu@intel.com

Jacob Pan jacob.jun.pan@intel.com

Oct. 30th 2020

mailto:yi.l.liu@intel.com
mailto:jacob.jun.pan@intel.com

Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course
of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here
is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications
and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from
published specifications. Current characterized errata are available on request. No product or component can be
absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-
548-4725 or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

Agenda

• PASID Recap

• Usages

– PASID in Shared Virtual Addressing (SVA)

– PASID in Intel® Scalable IOV

• PASID Management

PASID Recap

• PASID (Process Address Space ID)

– Defined by PCIe* spec

– DMA remapping happens at RID & PASID granularity

• IOMMU PASID Table

– Per-device table by hardware design.

– Storage in virtualization environment (Nested Translation[1])
• Intel® VT-d: maintained by host

• ARM* SMMUv3, AMD* IOMMU: maintained by guest

[1] https://static.sched.com/hosted_files/kvmforum2018/52/kvm-forum-vSVA-yliu-jpan-jean-eric.pdf

PASID in SVA

Device

Kernel

Device

Driver

App

IOMMU

Driver

devices

devices
Physical

device

Native Virtualization (Intel® VT-d)

PASID

program

ming Device

Host

QEMU

Guest

VFIO/IOMMU

Driver

devices

devices
Physical

device

PASID

program

ming

Flush

PASID

cache

Alloc

gPASID

Alloc

PASID

Bind

gPASID

Setup

Nested

Translation

Bind

process

Bind

mm

Alloc

PASID

Bind

PASID

Could be binding guest PASID
table per vendor support

PASID in Intel® Scalable IOV

Host

HW

Guest

Virtual Device Composition Module

Device

Driver
IOMMU

Driver

Default PASIDs

Device
…

…

…

• Default PASID of auxiliary

domain
– Each ADI (Assignable Device

Interface[1]) has a default PASID

– Assigned once attached to an

auxiliary IOMMU domain[1]

– ADIs attached to the same

IOMMU domain share the default

PASID of the domain

– Programmed to hardware by

parent device driver

IOMMU

VM

ADI

WQ

vdev0

RID +PASID #0

VM

ADI

WQ

vdev1

RID +PASID #1

VM

ADI

WQ

vdev2

RID +PASID #2DMA

[1] https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Hardware-Assisted-Mediated-Pass-Through-with-VFIO-Kevin-Tian-Intel.pdf

PASID is I/O Address Space ID

SVA & Scalable IOV

Host

HW

Guest

Virtual Device Composition Module

Device Driver

Device #B
ADI

WQ

vdev0

ADI

WQ

vdev1

Device
Driver

Device #A

Device
Driver

PASID Programming in SVA usage

VM #0 VM #1

Device
Driver

• PASID programming for PF
– PASIDs from guest are

programmed to hardware directly

• PASID programming for ADI
– PASIDs from guest are

converted to host PASIDs and

then programmed to hardware

– Intel® ENQCMD instruction can

do PASID Translation in

hardware
• “Scalable Work Submission in Device

Virtualization - Hao Wu, Intel”

https://kvmforum2020.sched.com/event/eE4d/scalable-work-submission-in-device-virtualization-hao-wu-intel?iframe=no

PASID Management w/ IOASID Core

IOASID is a generic kernel library (since v5.5) for

managing PASIDs

• Guest-Host PASID Mapping

• Partitioning & Namespaces

• Synchronization/Notifications

• Lifecycles

Guest-Host PASID Mapping

1. Shadow guest PASID table (Intel VT-d SM®)

– Requires G-H PASID translation (H-PASID != G-PASID)

– Requires host PASID backing of each guest PASID

– Requires system-wide host PASID namespace due to shared workqueues (SWQ) (i.e. a single SWQ

assigned to two VMs, the backing host PASIDs must be unique)

– PASID programming on PF assignment is NOT mediated, guest PASID is programmed. Potential conflict

with ADIs on the same VM if guest PASID bind and PRS not enforced.

2. Bind guest PASID table (ARM SMMU® v3)

– PASID namespace can be per VM since host IOMMU walks guest PASID table

– Host doesn’t care about guest PASIDs

Requirements for #1 is a superset of #2!

IOASID set 2

Host System-Wide IOASID

IOASID set 1

Namespaces & Partitioning

VM1
VM2

G-IOASID 1
G-IOASID 1

Host
IOASID 101

Host
IOASID 102

Host User
IOASID set 0

1. A VM has its own

PASID

namespace

2. Host PASIDs are

in a single

namespace but

partitioned into

group/ioasid_sets

Synchronization among IOASID Users

https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html

https://software.intel.com/content/www/us/en/develop/download/intel-data-streaming-accelerator-preliminary-architecture-specification.html

IOASID Core

KVMVFIO
IOMMU

Drivers
(mdev)

CPU/
MM

bind/unbind
alloc/free

PASID translation table

PASID MSR

PASID programming
on device

PASID table

bind/unbind

Virtual CMD

bind/unbind

https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-data-streaming-accelerator-preliminary-architecture-specification.html

Lifecycles: A PASID’s life

IOASID Core

VFIO

IOMMU
Driver

User

Kernel

VM1

bind/unbind

bind/unbind alloc/free

KVM
alloc/free ID

alloc/free set

Notify
IOASID_BIND/U

NBIND (G-H)
IOASID_FREE

SET
SET

VM/mm

Notify
IOASID_FREE

register_notifier()

register_notifier_mm(mm)

mmVM/mm

Host

mm
mm

Device driver

VM/mm

VM1

register_notifier_mm(mm)

VM/mm
VM/mm

bind/unbind

Normal order:

1. Init (per VM)

2. Alloc

3. Bind

4. Unbind

5. Free

Status

• Opens
– Should we expose IOAPID allocation via VFIO

or a new standalone UAPI?

– How can user manage IOASID
accounting/quota? Rlimit and Cgroup seem
too heavy

• Patchsets
– https://lkml.org/lkml/2020/9/28/1186

– https://lore.kernel.org/linux-iommu/5dd95fbf-054c-3bbc-e76b-
2d5636214ff2@redhat.com/T/

Summary

• DMA remapping is at RID & PASID granularity

• PASID is managed as I/O Address Space ID (IOASID) in Linux

• System-wide host PASID is chosen to support requirements from

all vendors

• Guest has its own PASID namespace

• PASIDs can have multiple users with hardware context association

• Notifications and reference counting are used to manage lifecycles

