
KVM Address Space Isolation (ASI)

Alexandre Chartre – Oracle
Ofir Weisse, Junaid Shahid, Oleg Rombakh, and Paul Turner – Google
KVM Summit – October 2020

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

2 KVM Forum - August 2020

Why ASI?

3 KVM Forum - August 2020

Context

● Data can leak between CPU threads from the same CPU core
– Leak through shared hardware (micro)architecture via speculative attacks
– Example: L1TF and MDS speculative attacks

4 KVM Forum - August 2020

Context

● Data can leak between CPU threads from the same CPU core
– Leak through shared hardware (micro)architecture via speculative attacks
– Example: L1TF and MDS speculative attacks

● A VM can control the leak and spy on its sibling CPU thread
– Guest can spy on another guest running on the same CPU core
– Guest can spy on the host running on the same CPU core

● Major issue for virtual machines and cloud providers
– Allow Guest-to-Guest attacks and Guest-to-Host attacks

5

Guest OS A Guest OS B

Host
Platform

creds

Guest data

KVM Forum - August 2020

Mitigations

● Basic mitigation: disable CPU hyper-threading
– Most complete and reliable solution
– Significant impact on performances and capacity

● Mitigation for Guest-to-Guest attacks
– Pin VMs to different dedicated CPU cores
– Core scheduling

● Mitigation for Guest-to-Host attacks
– Synchronize VM entry and VM exit for all CPU threads on a CPU

Core, i.e., halt sibling core when running host code
– Flush L1D cache before every VMENTER - not cheap
– KVM Address Space Isolation (ASI)

6 6KVM Forum - August 2020

ASI Intuition - Can’t Speculate Through a Page Fault

7

Trivial example: Spectre V1 (bounds check bypass)

If index is out of bounds, “arr” might speculatively still be accessed.
If &arr[index] is not mapped in the page-table → page-fault

KVM Forum - August 2020

ASI Overview

● Define a restricted address space
– Define a page table with limited data
– Contain no sensitive or secret data

● Prevent a sub-system from accessing the
entire memory or unrelated data

● Sub-system explicitly enters/exits ASI

● ASI can be interrupted/resumed on
interrupt, exception, context switch

● ASI can be suspended/exited on page-fault

● Accessing secrets → page fault

8

Guest OS
A

Guest OS
B

VMEXIT interrupt

Host
ASI domain

1
ASI domain

2
Privileged
memory

Guest A’s stuff Guest B’s stuff

VMEXIT interrupt

KVM Forum - August 2020

ASI Applications

● KVM ASI
– Protect against guest-to-host attack
– Major challenge: what data to include in the ASI domain?

● User ASI
– Implement kernel/user page-table switch with ASI
– Refactor Kernel Page-Table Isolation (KPTI) to use ASI

● Userland ASI?
– Provide multiple user address spaces to a user process
– Isolate user virtual environment (JVM, containers…)
– To be investigated

9 KVM Forum - August 2020

KVM ASI

10 KVM Forum - August 2020

KVM ASI

● Address space with limited kernel and VM mappings
– Only has mappings required to enter VM and handle VM exit

● Goal: run VM and handle (most) VM exits without exiting ASI

● Only map data from a single VM in the same ASI
– Prevent VM running on same CPU core to steal data from host kernel or from another VM

● Synchronize on VM entry only if sibling CPU thread is not running ASI
– No need to synchronize if all CPU threads are running with ASI
– Core scheduling helps having the same VM ASI run on all CPU threads

11 KVM Forum - August 2020

ASI Lifecycle

● Create an ASI
– Each ASI has its own page-table

● Populate the ASI page-table

● Enter ASI = switch to the ASI page-table

● Handle interrupt/exception/fault/context switch
– ASI can be interrupted and resumed, or exited

● Exit ASI = switch to the kernel page-table

● Destroy the ASI page-table

12 KVM Forum - August 2020

KVM ASI also used on siblings

● Create one KVM ASI per VM (or per VCPU)

● Populate the KVM ASI page-table

● Use KVM ASI when running a guest VCPU
– KVM_RUN ioctl
– Enter KVM ASI
– Ensure KVM ASI is used on siblings

● VMEnter

● VMExit
– Stop KVM ASI enforcement on siblings
– Run (most) VMExit handlers with KVM ASI
– vcpu_run() loop

KVM ASI Usage

13 KVM Forum - August 2020

ASI Page-Table Filling

● Basic solution: manually add each required mapping

○ asi_map(asi, address, length);

○ asi_unmap(asi, address);

● Similar to memory allocation/free

● Works okay for pre-allocated well-known buffers

● More cumbersome for frequently re-allocated buffers

● Need mechanisms for adding mappings more automatically

14 KVM Forum - August 2020

ASI Page-Table Filling - Statically Allocated Buffers

● Put non-sensitive statically allocated data into a dedicated object file section

● Just require to add a compiler section attribute to the data definition

#define __asi_not_sensitive __attribute__((__section__(ASI_NON_SENSITIVE_SECTION_NAME)))

● Then map the entire section into the ASI

15 KVM Forum - August 2020

ASI Page-Table Filling - Dynamically Allocated Buffers

● Use new flag when allocating a non-sensitive buffer:
○ GFP_GLOBAL_NONSENSITIVE - non-sensitive data for any ASI

○ GFP_LOCAL_NONSENSITIVE - non-sensitive data for the local process

● Buffer is automatically [un]mapped into the current ASI on alloc/free
16 KVM Forum - August 2020

ASI Page-Table Switching

● Simple on x86: just update the CR3 control register
– But inefficient if you don’t consider TLB

● TLB = Translation Lookaside Buffer
– Caches VA-to-PA translations, avoid MMU to go through the page-table
– Switching require flushing the TLB → impact on performances

● Optimization: use Process-Context Identifiers (PCIDs)
– Facility to associate a TLB entry with a page-table
– Avoid flushing the entire TLB
– Flush only TLB entries for a specified PCID

17 KVM Forum - August 2020

ASI and Interrupts/Exceptions

● Should be able to handle interrupts/exceptions while running with ASI
– But ASI doesn’t necessarily have all mappings to run the interrupt/exception handler

● Suspend/Resume ASI while running interrupt/exception handler
– Exit ASI at the beginning of the handler
– Re-enter ASI at the end of the handler
– Solution when we know the handler needs the kernel page-table

18 KVM Forum - August 2020

ASI

interrupt interrupt
return

kernel page-table

Interrupt Handler

Code

ASI

Code (cont.)

ASI and Interrupts/Exceptions

● Run the interrupt/exception handler with the ASI page-table
● Handler can fault because of the ASI restricted page-table
● Page-fault handler will then exit ASI and resume handler execution
● ASI is re-entered after the handler is done (if there was a fault)
● Solution when we expect the handler to be able to run with ASI

19 KVM Forum - August 2020

ASI

interrupt interrupt
return

ASI

Entire Interrupt Handler runs with ASI (ideal case)

Code

ASI

Code (cont.)

ASI and Interrupts/Exceptions

20 KVM Forum - August 2020

ASI

ASI

Interrupt Handler

interrupt interrupt
return

kernel page-table

Page-Fault Handler

kernel page-table

Intr. Handler (cont.)

page-fault page-fault
return

Code

ASI

Code (cont.)

ASI and Page Fault

● Basic behavior:
– Exit ASI and retry with kernel page-table
– Log fault to identify missing mapping in ASI page-table
– Eventually manually augment the ASI page-table to prevent this fault

● Can we do better?
– Automatically add missing mapping to the ASI page-table
– Only if mapping does not provide access to sensitive data
– Allow to return with ASI and avoid the same fault to happen again
– Require to flag kernel memory which has no sensitive data

(e.g. GFP_GLOBAL_NONSENSITIVE)

21 KVM Forum - August 2020

ASI and Context Switch

● Task using ASI is scheduled out → interrupt ASI
– Exit ASI and save ASI information for this task

● Task using ASI is scheduled in → resume ASI
– Enter ASI with the saved ASI information for this task

● Additional complexity if switch occurs during interrupt/exception handler
– Interrupt/exception might already have exited ASI
– Need to save/restore ASI state information

22 KVM Forum - August 2020

● Mechanism to force all CPU threads from a CPU core to use a specified ASI

● If sibling CPU thread is running ASI
– CPU thread continues to run uninterrupted
– If CPU thread tries to exit ASI when it waits in idle loop

● If sibling CPU thread is not running ASI
– CPU thread is requested to reschedule
– If next task is using ASI then enter ASI and run the task
– If next task is not using ASI then enter ASI and wait in idle loop

● KVM ASI uses ASI synchronization while running a VM
– Synchronization is started before VMEnter
– Synchronization is stopped after VMExit

ASI Synchronization Across CPU Threads

23 KVM Forum - August 2020

KVM ASI Synchronization with Siblings Running ASI

24 KVM Forum - August 2020

ASI

ASI

peek for ASI

VM ASI

ASI ASI idle loop Kernel

stop
synchronization

start
synchronization

peek for ASI

ASI exit
wait before exiting

Sibling CPU 1

Sibling CPU 2

CPU
running KVM

KVM ASI Synchronization with Siblings not Running ASI

25 KVM Forum - August 2020

ASI

ASI

peek for ASI

VM ASI

ASI idle loop Kernel

stop
synchronization

start
synchronization

peek for ASI

Kernel

Kernel

send
reschedule()

send
reschedule()

next task is using ASI
run task with ASI

next task is not using ASI
switch to ASI and wait

Sibling CPU 1

Sibling CPU 2

CPU
running KVM

● If Interrupt/Exception needs to exit ASI

● Then this will cause all sibling CPU threads to interrupt

● One CPU thread receives an interrupt/exception, touches secret data → PF → ASI-exit

● That CPU thread forces all sibling CPU threads to interrupt
– All CPU threads exit ASI, wait for interrupt to be processed, return to ASI
– Behavior is synchronized across all CPU threads

● Core Scheduling has a somewhat similar mechanism
– To prevent interrupt/exception handler to run with tagged process

ASI Synchronization and Interrupt/Exception

26 KVM Forum - August 2020

ASI Page Tables

27 KVM Forum - August 2020

The KPTI Model - Control & Data Privilege

userspace userspace

Global kernel data

Kernel text, modules,
globals

Process A data

Process B data

Other stuff we’ll ignore
for now

Userspace
page-table

Kernel
page-table

Direct map
via kmalloc

● We’ll ignore vmalloc space for now.
It is conceptually similar to direct map
 ● We’ll also ignore global vars

Not mapped

Privileged data

To mitigate Meltdown attacks, KPTI
differentiates between privileged/unprivileged
execution level.

The methodology - using two page tables to
separate between user space memory and
kernel privileged memory.

The ASI Model - Data Privilege

userspace userspace

Global kernel data

Kernel text, modules,
globals

Process A data

Process B data

Other stuff we’ll ignore
for now

Userspace
page-table

Global non-sensitive
data

userspace

Global kernel data

Kernel text, modules,
globals

Process A data

Process B data

Other stuff we’ll ignore
for now

Global non-sensitive
data

Not mapped

Privileged data

Non-sensitive dataKernel unrestricted
page-table

Kernel restricted
page-table

Kernel text, modules,
globals

In ASI, we define privilege based on data
access, not execution-level. We add another
“restricted” page-table which only maps
kernel non-sensitive data.

Data is deemed non-sensitive if, when
stolen by a malicious VM, does not pose a
security threat to other VMs or cloud
infrastructure.

For performance reasons, we’re interested in
memory that is accessed frequently by the
kernel, when operating a VM between
VMEXIT and VMENTER.

The ASI Model - Data Privilege

userspace userspace

Global kernel data

Kernel text, modules,
globals

Process A data

Process B data

Other stuff we’ll ignore
for now

Userspace
page-table

Global non-sensitive
data

userspace

Global kernel data

Kernel text, modules,
globals

Process A data

Process B data

Other stuff we’ll ignore
for now

Global non-sensitive
data

● Non-sensitive data can be accessed freely,
without the need for any L1TF mitigations

● Access to “unmapped” area will cause a
PF, which will switch to the unrestricted
page-table. Use L1TF mitigation when
switching (stunning/L1D-flush)

Not mapped

Privileged data

Non-sensitive dataKernel unrestricted
page-table

Kernel restricted
page-table

Kernel text, modules,
globals

Is data considered non-sensitive locally in a
process or globally in the entire system?

Examples:
1. Local data: VMCS, vcpu, file-descriptor-table
2. Global data: sk_buffs

All non-sensitive data in ASI can be read by a
guest VM via an L1TF attack

While we want VM-1 to access its VMCS freely
we don’t want VM-1 to read the VMCS of VM-2!!

31

Partitioning Global/Local Data

Global kernel data

VM A data

VM B data

Other stuff we’ll ignore
for now

Not mapped

Privileged data

Kernel unrestricted

Global non-sensitive
data

Global non-sensitive data

userspace

Global kernel data

Kernel text, modules,
globals

VM A data

VM B data

Other stuff we’ll ignore
for now

Kernel restricted
Page-table
Process A

Global non-sensitive
data

Local non-sensitive data
userspace

Global kernel data

Kernel text, modules,
globals

VM A data

VM B data

Other stuff we’ll ignore
for now

Kernel restricted
Page-table
Process B

Global non-sensitive
data

Kernel text, modules,
globals

Early Results

32 KVM Forum - August 2020

33

Initial Results - Aeropspike YCSB

Ratio of ASI-exits/VM-exits

KVM Forum - August 2020

34

Initial Results - Aeropspike YCSB

Exit details

KVM Forum - August 2020

35

Initial Results - Aeropspike YCSB

Exit details by allocation site

KVM Forum - August 2020

ASI Status

36

History

● Idea suggested after L1TF speculative attack discovery
– Initially introduced by Liran Alon in KVM Forum 2018 BoF
– Inspired from Microsoft HyperV HyperClear L1TF mitigation
– More discussions at Linux Plumbers Conference 2019

● Several RFCs submitted by Oracle
– v1 (KVM ASI), v2 (Kernel ASI), v3 (+ integration with PTI), v4 (+ page-table management)
– v5 (+ ASI synchronization)

● Different implementation recently proposed by Google
– Presented at Linux Plumbers Conference 2020

37 KVM Forum - August 2020

Status and Future

● Collaboration between Oracle and Google

● Define a common solution and converge implementation
– Page-table management
– Interrupt/exception/page-fault handling
– ASI synchronization across CPU threads (shared component with Core Scheduling?)
– PTI integration

● Goal: upstream a common implementation

● Preliminary work: Defer PTI CR3 Switch to C Code
– Simplify ASI support and integration with Page-Table Isolation (PTI)

38 KVM Forum - August 2020

Thank You

alexandre.chartre@oracle.com
oweisse@google.com

39 KVM Forum - August 2020

mailto:alexandre.chartre@oracle.com
mailto:oweisse@google.com

