
Long live
asynchronous page fault!

KVM FORUM 2020

Vitaly Kuznetsov <vkuznets@redhat.com>
Vivek Goyal <vgoyal@redhat.com>

mailto:vkuznets@redhat.com
mailto:vkuznets@redhat.com

About us

About

Vitaly Kuznetsov

● KVM contributor and reviewer
● Areas of interest:

○ PV features
○ Hyper-V emulation, Windows

guests
○ Nesting

Vivek Goyal

● Linux Kernel Developer
● Contributions in virtiofs,

overlayfs, kexec/kdump, block
layer.

Which #PFs are we interested in?

What is asynchronous page fault?

PRESENT

PRESENT

PRESENT

!Presentmemory
access

Data

Data

Guest

Guest page
tables

Host

Host page
tables

What normally happens in these circumstances?

What is asynchronous page fault?

1. Guest vCPU is blocked

2. Page fault condition is (hopefully) resolved on the host, e.g. the missing page is
brought back from swap.

3. Guest vCPU resumes execution

What normally happens in these circumstances?

What is asynchronous page fault?

1. Guest vCPU is blocked

2. Page fault condition is (hopefully) resolved on the host, e.g. the missing page is
brought back from swap. → This can take really long, but the physical CPU may
actually be idle.

3. Guest vCPU resumes execution

Can we still do something useful on the vCPU while we
are waiting for the page to be brought from storage?

What is asynchronous page fault?

Two options:

● Let the guest know about the situation so it can run some other processes in the
meantime → asynchronous page fault.

● Synthetically “halt” guest vCPU and hope for rescheduling interrupt to arrive →
synthetic APF halt.

Asynchronous
page fault: initial
implementation
(2010)

Asynchronous page fault: implementation details
(original, 2010)

Asynchronous page fault: initial implementation

● Two types of events:
○ “Page not present”
○ “Page ready”

● #PF exception is used to deliver the event
● Page gets an associated ‘token’ which is passed through CR2
● Guest/host shared data structure (“APF reason”) which indicates:

○ The fact that the #PF is asynchronous
○ Type of the event (page not present, page ready)

Asynchronous page fault: how does it work
“Page not present” flow

Asynchronous page fault: initial implementation

1. A process inside the guest is trying to access a page
which is swapped out on the host

2. KVM queues the request to bring the page, assigns a
token, sets a flag in the shared data structure indicating
‘page not present’ event.

3. KVM injects #PF to the guest
4. Guest kernel analyzes shared data structure and gets

the token from CR2
5. The process which caused APF is being frozen until the

corresponding ‘page ready’ even arrives.
6. Guest kernel switches to some other process

Userspace task 1

Accessing
unavailable

memory

Userspace task 2

KVM injects
APF

Guest kernel

#PF

Freezes “task
1”

Asynchronous page fault: how does it work
“Page ready” flow

Asynchronous page fault: initial implementation

1. … eventually the page which previously caused a
“page not present” event is swapped in on the
host.

2. KVM interrupts the guest, sets a flag in the shared
data structure indicating ‘page ready’ event.

3. #PF is being injected to the guest
4. Guest kernel analyzes shared data structure and

gets the token from CR2
5. The process which caused APF is being unfrozen,

it can now be scheduled again.

Userspace task 2 running ...

Userspace task 1 continues

KVM injects
APF

Guest kernel

#PF

Wakes up
“task 1”

Asynchronous page fault: extensions

Asynchronous page fault: initial implementation

● “Send always” mode
○ Allows delivery of APF “page not present” events in CPL=0

■ Process causing APF can be the guest kernel itself
(CONFIG_PREEMPT)

● Asynchronous page fault delivery in guest mode
○ Allows delivery of APF events as PF VMEXITs when the guest is running

a nested guest.

Asynchronous page fault: design flaws

Asynchronous page fault: initial implementation

Documentation/virt/kvm/msr.rst:

Guest must not enable interrupt before the reason is read, or it may be
overwritten by another APF. Since APF uses the same exception vector as
regular page fault guest must reset the reason to 0 before it does
something that can generate normal page fault.

But can this really be guaranteed?

Example of a faulty scenario

Asynchronous page fault: initial implementation

=> Asynchronous page fault event is injected (#PF)

=> NMI before APF handler reads CR2 and clears APF ‘reason’

=> NMI handler accesses user memory and gets real #PF

=> CR2 gets clobbered, …

=> APF event can’t be handled

Example of a faulty scenario

Asynchronous page fault: initial implementation

=> Asynchronous page fault event is injected

=> NMI before APF handler reads CR2 and clears APF ‘reason’

=> NMI handler accesses user memory and gets real #PF

=> CR2 gets clobbered, …

=> APF event can’t be handled

Boom!

Asynchronous
page fault:
updated
implementation
(2020)

Asynchronous page fault: updated implementation

Asynchronous page fault: 2020 update

● “Send always” mode for “page not present” was completely deprecated and
disabled.

● “Page ready” event delivery switched to using interrupts instead of #PF
○ Shared data structure was extended with token information (as CR2 is

not being used).
○ Guest kernel has to support the new delivery mode or APF mechanism

is not enabled
■ KVM was switched in Linux-5.8, QEMU-5.2 is required
■ Guest kernel enablement in Linux-5.9

● Plans to switch “page not present” events to #VE/#MC/some other exception
(interrupt?).

Asynchronous page fault:
Updated “Page ready” flow

Asynchronous page fault: 2020 update

1. … eventually the page which previously caused a “page not
present” event is swapped in on the host.

2. KVM interrupts the guest and checks if the token slot in the
shared data structure is free.
○ In case it is not the event can’t be delivered.

3. KVM fills shared data structure with token information
4. An interrupt is injected to the guest, it doesn’t have to be

handled immediately.
5. In the interrupt handler guest kernel analyzes shared data

structure and gets the token from it
6. The process which caused APF is being unfrozen, it can now be

scheduled again.
7. Guest frees token slot and indicates “end of message” to KVM so

more events can be delivered.

Userspace task 2 running ...

Userspace task 1 continues

KVM injects
APF

Guest kernel

Interrupt

Wakes up
“task 1”

ACK

KVM Page Fault
Error Handling

What if KVM can’t resolve page fault successfully

KVM Page Fault Error Handling

What if KVM can’t resolve page fault successfully
When can that happen

KVM Page Fault Error Handling

What if KVM can’t resolve page fault successfully
When does that happen

Virtiofs + DAX

KVM Page Fault Error Handling

KVM Page Fault Error Handling

Guest

What is virtiofs

Host

shared dir
/foo Virtio

● A pass through file system
● Allows sharing a directory tree on host with guest

virtiofsd

(Fuse
Server)

shared dir
/foo

Process

fuse

Virtiofs.ko
(fuse client)

fuse +
vhost_user

KVM Page Fault Error Handling

What about virtiofs + DAX

Qemu Guest

Host

foo.txt

virtiofsd

Fuse
Server

Process

virtiofs.ko
Qemu Virtio

device shared
memory

region

Virtiofs device
cache memory

FUSE_SETUPMAPPING

VHOST_USER_SLAVE_FS_MAP

mmap()

Map device pfn
using DAX

mmap(foo.txt)

● Host page cache page is directly mapped into guest process
● Qemu does mmap(foo.txt) in device cache region
● virtiofs.ko maps cache region pfn into process using DAX

What if file foo.txt gets truncated on host and guest does
a load/store operation from/to truncated page

KVM Page Fault Error Handling

What if file foo.txt gets truncated on host and guest does
a load/store operation from/to truncated page

➢ Sync page fault, exit to qemu with -EFAULT

➢ Async page fault, loop infinitely

KVM Page Fault Error Handling

KVM async page fault error handling

KVM Page Fault Error Handling

● KVM async page fault code ignores
error and always injects “Page
Ready” event

● Guest retries memory access and
kvm injects “Page Ready” again.

● And this continues in a loop
infinitely

● Need a mechanism to report errors
to guest

Guest

Host

Mov A B

VMEXIT
Page Not

Ready
Page Ready

get_user_pages_remote()

Desired Behavior

KVM Page Fault Error Handling

● Uniform behavior for sync/async page faults
● Posted a patch to fix it

○ https://lore.kernel.org/kvm/20200720211359.GF502563@redhat.com/
● Normally on host a process gets SIGBUS in such scenarios
● Need a way to detect error on host, inject error in guest and send SIGBUS to

process
● If guest kernel was accessing truncated page, return from memcpy to user

space
○ Exception Table Fixup

https://lore.kernel.org/kvm/20200720211359.GF502563@redhat.com/

Various Proposals

KVM Page Fault Error Handling

● Use asynchronous page fault “page ready” interrupt to report error
○ Works only if “page not present” event was sent
○ Now disabled if cpl == 0
○ Can’t handle guest kernel access of truncated page
○ Error reporting dependent on async page fault mechanism. Does not

work for synchronous faults.
○ Posted patches here

■ https://lore.kernel.org/kvm/20200616214847.24482-1-vgoyal@re
dhat.com/

https://lore.kernel.org/kvm/20200616214847.24482-1-vgoyal@redhat.com/
https://lore.kernel.org/kvm/20200616214847.24482-1-vgoyal@redhat.com/

Various Proposals

KVM Page Fault Error Handling

● Use Machine Check Exceptions
○ Generated synchronously for load operation
○ On real hardware, stores will not generate synchronous MCE
○ Need error reporting both on load and store
○ Most of the error handling code written with assumption that only

loads will generate synchronous MCE
○ There was resistance to create separate code path in MCE handler

Various Proposals

KVM Page Fault Error Handling

● Use #VE
○ Available on Intel (x86). What about other arches?
○ Can be used to report “Page Not Present” events as well, hence

eliminating #PF races.
○ Somebody is yet to post patches.

Various Proposals

KVM Page Fault Error Handling

● Handle at virtiofs level
○ Implement some sort of file lease
○ File truncate takes write lease, breaks existing leases and unmaps

pages from all other guests
○ Truncation proceeds and now guest should not run into the issue of

mapped pfn missing
○ Does not work if shared directory is modified on host directly. Does

not go through virtiofsd.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you!

