
KVM Latency and Scalability Performance Tuning

KVM FORUM 2020
Wanpeng Li

wanpengli@tencent.com



Agenda
Virtual IPI Fastpath

Virtual TSC-Deadline Timer Fastpath

Boost Preempted vCPU

Yield To IPI Target



Generic Fastpath Handler Motivation
ICR and TSCDEADLINE MSRs write cause the main MSRs write vmexits
Multicast IPIs are not as common as unicast IPI like RESCHEDULE_VECTOR 
and CALL_FUNCTION_SINGLE_VECTOR



Virtual IPI Fastpath
Emulate IPI send after

various guest states save and host states load
various conditions checking
host interrupts and preemption enabled
expensive RCU operations

Guest OS

Set ICR

KVM hypervisor

VCPU1

emulate ICR send IPI

VCPU2



Virtual IPI Fastpath
Sending the virtual IPI to the target vCPU in a very early stage of KVM VMExit
handler

Before host interrupts are enabled
Before expensive operations such as reacquiring KVM’s SRCU lock



Virtual IPI Fastpath

0

100000000

200000000

300000000

400000000

500000000

600000000

IPI Benchmark Score

Before After

30%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

KVM Unit Test Latency

Before After

Performance data

22.3%



IPI AMD hardware acceleration

0

5

10

15

20

25

Destination Shorthand: All excluding self

IPI Benchmark on AMD

NoAVIC AVIC

0

20

40

60

80

100

120

140

Destination Shorthand: Destination

hackbench on AMD

NoAVIC AVIC

Evaluation Environment
Hardware: AMD ROME, 2 sockets, 96 cores, 192 threads
VM: 180 vCPUs, with xapic
Latency less is better

3%
55.2%

Oops!



Virtual TSC-Deadline Timer Fastpath

much more latency much more latency

Both arm timer and timer fire incur vmexits
Various housekeeping tasks before emulation

Set APIC timer

emulate 
APIC access

timer 
handler

vIRQ
injection

timer handler

VM Exit
VM Enter

VM Exit

VM Enter

Guest

Host

timer
interrupt



Virtual TSC-Deadline Timer Fastpath

0

1000

2000

3000

4000

5000

6000

Cyclictest

Cyclictest Latency Count

Before After

Vmexit due to TSC deadline timer 
emulation

Shortcutting various housekeeping tasks in the 
vCPU loop
Handle it and vmentry immediately

16.5%



Boost preempted vCPU
Boost vCPUs that are ready to deliver interrupts

Most smp_call_function_many calls are synchronous, we want to boost not just lock holders 
but also vCPUs that are delivering interrupts. The IPI target vCPUs are also good yield 
candidates.



Run

vCPU1

Sleep

vCPU2

Run

vCPU3

Lock-Waiter
Preemption

Boost preempted vCPU
Lock Waiter Preemption

Due to the FIFO-ordered spinlock algorithm whenever a hypervisor preempts the next waiter 
that has not yet acquired the lock, even if the lock is released, no other thread is allowed to 
acquire it until the next waiter is allowed to run.

The lock holder vCPU yields to the queue head vCPU when unlock, to boost queue head 
vCPU.



Yield To IPI Target
When sending a call-function IPI-many to vCPUs

yield if any of the IPI target vCPUs was preempted
select the first preempted target vCPU which we found



Boost preempted vCPU and Yield
Evaluation Environment

Hardware: Xeon Cascade Lake 2 sockets, 48 cores, 96 threads.
VM: each 96 vCPUs
Test case: One is running ebizzy -M, others are running cpu-bound workloads

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1VM 2VM 3VM

vanilla optimized

RECORDS/S

3.4%

224.0% 48.3%



Reference

https://lkml.org/lkml/2019/11/20/1281

https://lkml.org/lkml/2020/3/25/1221

https://lkml.org/lkml/2020/5/6/881

https://lkml.org/lkml/2019/7/18/385

https://lkml.org/lkml/2019/6/11/469

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=89340d



Q/A ?


