
Virtio-(balloon|pmem|mem):
Managing Guest Memory
David Hildenbrand & Michael S. Tsirkin
Red Hat

@twitter

Motivation: Manage Guest Memory

Speed up migration
● Any VM memory possibly contains “important” data
● Some VM memory contains data that is not worth migrating

Reduce host swapping when overcommitting memory
● There might be a lot of unused / free memory inside VMs
● Instead of swapping, rather temporarily “steal” unused memory from VMs

Control / Shrink the pagecache in the VM
● Guest OS in the VM will try to make use available memory for caches.
● Some data in caches can be dropped without affecting workloads

Dynamically resize VM memory - memory hot(un)plug
● Automatically (VM needs) or manually (user requests)

Recap: Memory Ballooning

VM

Hypervisor

Balloon

“Relocate physical memory between a VM and its hypervisor”

VM

Hypervisor

Balloon

Inflate

Deflate

1 GiB

e.g., 8 GiB freee.g., 9 GiB free

8 GiB 9 GiB

3 GiB

4 GiB

Balloon Inflation
● Guest driver allocates memory and tells the

hypervisor about it
● Hypervisor can reuse inflated memory (e.g., for

other VMs)
Balloon Deflation

● Guest driver frees previously allocated memory
after telling the hypervisor

● Guest OS can use deflated memory
Controlled by “target balloon size”

● Requests to change “logical VM size”

Using Memory Balloon Inflation / Deflation ?

Speed up migration
● Any VM memory possibly contains “important” data
● Some VM memory contains data that is not worth migrating

Reduce host swapping when overcommitting memory
● There might be a lot of unused / free memory inside VMs
● Instead of swapping, rather temporarily “steal” unused memory from VMs

Control / Shrink the pagecache in the VM
● Guest OS in the VM will try to make use available memory for caches
● Some data in caches can be dropped without affecting workloads

Dynamically resize VM memory - memory hot(un)plug
● Automatically (VM needs) or manually (user requests) dynamically inflate/deflate balloon

dynamically inflate/deflate balloon

inflate balloon + deflate balloon

inflate balloon before migration +
deflate balloon after migration

Without going into detail, there are a lot of issues ...

Virtio-(balloon|pmem|mem)

Speed up migration
● Any VM memory possibly contains “important” data
● Some VM memory contains data that is not worth migrating

Reduce host swapping when overcommitting memory
● There might be a lot of unused / free memory inside VMs
● Instead of swapping, rather temporarily “steal” unused memory from VMs

Control / Shrink the pagecache in the VM
● Guest OS in the VM will try to make use available memory for caches
● Some data in caches can be dropped without affecting workloads

Dynamically resize VM memory - memory hot(un)plug
● Automatically (VM needs) or manually (user requests) dynamically inflate/deflate balloon

virtio-mem

dynamically inflate/deflate balloon
virtio-balloon: free page reporting

inflate balloon + deflate balloon
virtio-pmem

inflate balloon before migration +
deflate balloon after migration
virtio-balloon: free page hinting

virtio-balloon: inflate/deflate under host control

Inflate by how much?
● Too much slows down guest
● Not enough slows down host/migration

Example: migration
Hypervisor

e.g., 8 GiB free

VM
4 GiB

Balloon

4 GiB

VM

1 GiBInflate
4 GiB

VM

8 GiB

VM
4 GiB

VM

8 GiB
Migrate

Ballon

4 GiB
Deflate

4 GiB

We can check guest stats but
they change!

VVM
4 GiB

Balloon

4 GiB

virtio-balloon: inflate/deflate under guest control

Idea 1: inflate up to all free memory

Idea 2: let guest deflate any time

Idea 3: free memory is written to by guest
● Before use
● Host can detect it

Idea 4: do not fragment guest memory
● MAX_ORDER - 1 pages

AKA free page hinting/reporting

No explicit deflate

Less overhead

Don’t slow down the guest

Don’t slow down the host

free page hinting: by Wei Wang (Intel)

Host: RAM write-protected (guest writes tracked)
Host: request free page hints from guest
Host: start migrating RAM

Host: receive a free page hint
Host: was page written to meanwhile?

● If not mark it as already migrated
● Won’t be migrated unless written to later

Host: detect a page fault, mark page for migration

Guest: add all free pages to
balloon
Guest: send each page to host

Guest: use a free page
 by writing into it

Guest: can shrink balloon at
any time

free page hinting: pros and cons

 Pros

No overhead until requested
● E.g. only during migration
● Cancel/restart any time

Reuse hypervisor write tracking
● Exists for pre-copy migration

Shrinks balloon without waiting for host
● No allocation stalls

A good fit for migration

Cons

Needs to be requested by host
● Not always clear when

One shot
● Inflating often - expensive

Relies on write tracking
● Adds overhead to writes

Less of a good fit for
overcommit

free page reporting: by Alexander Duyck (Intel)

Host: receive a free page report
Host: mark page as safe to discard (MADV_FREE)
Host: report page processed to guest

Host: detect a page fault, allocate a new page

Guest: add (some) new free
pages to balloon

Guest: use a free page
 by writing into it

Guest: take pages out of the
balloon, free to use

free page reporting: pros and cons

 Pros

Active at all times
● No need to activate after boot

Robust, simple host implementation

No need to track guest writes
● Potentially, less exits when memory is static

A good fit for overcommit

Cons

overhead incurred periodically
● 1-2% in memory

intensive workloads

shrinking waits for host
● might stall because of

host scheduler

Less of a good fit for
migration

Balloon: TODOs

Shrinking guest caches
● virtio-pmem is one solution for the page cache
● Application caches?

No support for VFIO
● Needs host IOMMU support

Fix inflate/deflate interface bugs
● More than 2^44 for inflate/deflate
● Different host/guest page sizes
● Spec deflate on OOM

Contributions welcome!

virtio-pmem: Overview (1)

“Emulated NVDIMM with a paravirtualized flushing interface”

Instead of virtio-blk …
“… -drive file=./disk.img,format=raw,if=virtio …”

… use virtio-pmem:
“… -object memory-backend-file,id=mem0,share=on,mem-path=./disk.img,size=4G, …”

“… -device virtio-pmem-pci,id=vpmem0,memdev=mem0 …”

Map a file (disk image) into VM physical address space
● Guest accesses disk similar to a NVDIMM (DAX), however flushes work properly
● Idea from Rik van Riel, implemented by Pankaj Gupta

virtio-pmem: Overview (2)

VM Physical Address Space

DAX (virtio-pmem)RAM

File

QEMU Virtual Address Space

Guest RAM MMAPed File

DAX (NVDIMM)

MMAPed NVDIMM

DAX (NVDIMM)

QEMU: fsync()

Guest: virtio-pmem flush request

DAX: “bypass” guest
pagecache - in contrast
to other (e.g., virtio-blk)
disk access

Managed by
hypervisor
pagecache

...

Guest: memory flush +
fence instructions

virtio-pmem: (Dis)Advantages and Open Items

Advantages
● Move pagecache handling from guest to hypervisor - free up guest pagecache
● “Safe” file-backed emulated NVDIMMs - writes properly flushed
● NVDIMM-like mechanism even for architectures without hardware NVDIMMs (and no ACPI)

Disadvantages
● Supports only RAW disk images for now
● Security/fairness concerns (e.g., pagecache side-channel attacks)
● Booting requires external kernel in QEMU (or other disk)
● Not applicable in all setups (e.g., if the hypervisor pagecache isn’t involved - SR-IOV/mdev, big disks?)

Open Items
● Support other architectures (e.g., arm64, ppc64, s390x) and guest OSs (e.g., Windows)
● Support other disk image types (e.g., using userfaultfd)
● Proper asynchronous flushing in Linux (to fix a preflush order issues - WIP)
● Libvirt integration, live migration, (hot)unplug support, QEMU optimization (e.g., io_ring) ...

virtio-mem: Overview (1)

VM

“Fine-grained, NUMA-aware memory hot(un)plug to dynamically resize VMs”

Hypervisor
e.g., 8 GiB free

8 GiB

3 GiB

virtio-mem devices
● Provide a flexible amount of memory to a VM
● Each device manages a dedicated memory region

in VM physical address space
● Each can be assigned to a NUMA node
● Memory not touched by unmodified guests OS
● Works in granularity of blocks (e.g., 2 MiB)

Three main properties per device
● Size

● How much memory is currently plugged
● Maximum size

● How much memory could be plugged
● Requested size

● Request to guest driver to hot(un)plugs
blocks to reach requested size

Node 0
Node 1

VM virtio-mem #0

virtio-mem #1

Initial / boot memory device memory

virtio-mem: Overview (2)

1. Prepare for memory devices (here: 16 GB)
“/usr/libexec/qemu-kvm -m 4G,maxmem=20G ...”

2. Create 1..x memory backends, specifying the maximum size
“... -object memory-backend-ram,id=mem0,size=16G …”

3. Create 1..x virtio-mem devices, connecting a backend (optionally specifying a node)
“... -device virtio-mem-pci,id=vm0,memdev=mem0,node=0 …”

4. Request a resize (here: 4 GB)
HMP: “qom-set vm0 requested-size 4G”

5. Query current size
HMP: “qom-get vm0 size”

HMP: “info memory-devices”

Memory device [virtio-mem]: "vm0"
 memaddr: 0x100000000
 node: 0
 requested-size: 4294967296
 size: 4294967296
 max-size: 17179869184
 block-size: 2097152
 memdev: /objects/mem0

virtio-mem: (Dis)Advantages and Open Items

Advantages
● Resize a VM in (configurable) increments - e.g., >= 4 MB on x86-64
● Significantly more flexible than DIMMs and memory ballooning
● Manages VM size changes/requests completely in QEMU (no DIMMs)
● Architecture-independent (e.g., no ACPI)

Disadvantages
● Not production ready yet - basic versions are upstream in Linux/QEMU/cloud-hypervisor
● Slower than memory ballooning, cannot “unplug” as much as memory ballooning
● Incompatible with hibernation/suspend

Open Items
● Support other architectures (e.g., arm64, ppc64, s390x) and guest OSs (e.g., Windows)
● Linux driver: e.g., memory hotunplug improvements (WIP), ...
● QEMU: e.g., vfio support (WIP), ...
● Libvirt integration
● ...

Summary + Outlook

We now have specialized mechanisms to manage guest memory
● virtio-balloon: better interfaces to speed up migration and optimize memory overcommit
● virtio-pmem: move pagecache management to the hypervisor
● virtio-mem: fine-grained, NUMA-aware memory hot(un)plug

Traditional balloon inflation/deflation remains important
● New mechanisms still have to mature
● Require deeper MM integration - e.g., Windows support difficult

There is still a lot to optimize
● Guest pagecache remains challenging (e.g., virtio-pmem isn’t always applicable)
● Encrypted VMs remain challenging

● The hypervisor isn’t allowed to modify (e.g., discard) VM memory content
● Basic virtio-balloon inflation/deflation and virtio-mem might be feasible. virtio-pmem?

● vfio remains challenging
● Pins all guest memory, forcing it to remain in hypervisor memory ...
● At least virtio-mem should be feasible. virtio-balloon? virtio-pmem?

Resources

virtio-spec:
● v1.1: http://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.pdf
● Latest draft: https://github.com/oasis-tcs/virtio-spec

virtio-balloon
● Free page reporting:

https://lore.kernel.org/lkml/20200211224416.29318.44077.stgit@localhost.localdomain/
● Free page hinting:
● https://lore.kernel.org/kvm/1535333539-32420-1-git-send-email-wei.w.wang@intel.com/

virtio-pmem
● QEMU documentation: https://github.com/qemu/qemu/blob/master/docs/virtio-pmem.rst
● Early proposal: https://www.spinics.net/lists/kvm/msg149761.html
● Early discussion: https://www.spinics.net/lists/kvm/msg153095.html

virtio-mem
● Status page: https://virtio-mem.gitlab.io

http://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.pdf
https://github.com/oasis-tcs/virtio-spec
https://lore.kernel.org/lkml/20200211224416.29318.44077.stgit@localhost.localdomain/
https://lore.kernel.org/kvm/1535333539-32420-1-git-send-email-wei.w.wang@intel.com/
https://github.com/qemu/qemu/blob/master/docs/virtio-pmem.rst
https://www.spinics.net/lists/kvm/msg149761.html
https://www.spinics.net/lists/kvm/msg153095.html
https://virtio-mem.gitlab.io

