
Hypervisor Based Integrity:
Protect Guest Kernel in Cloud

Ning Yang (ningyang@google.com)
Forrest Yuan Yu (yuanyu@googlecom)

Ning Yang (ningyang@google.com)

Forrest Yu (yuanyu@google.com) KVM Forum 2020

• This is not a statement of direction or planned
investment by Google.

• We are exploring this as a possible security
mechanism and seeking feedback from the
community.

Disclaimer

Background

• Google Cloud Offers Shielded VM with Secure Boot
– It provides integrity check against firmware, bootloader and

kernel during boot
– most kernel modules are protected by module signing.

• At run time, attacks against the kernel could still happen:
– If the kernel is compromised, all existing guest kernel security

protection mechanisms cannot be trusted

UEFI Firmware Bootloader Kernel Boot User Applications

Protected by Secure Boot At user’s own risk

Runtime Kernel Dynamic Module

https://cloud.google.com/shielded-vm

Background

• The goal is to protect the kernel at runtime, so it can
be trusted and the user applications are safe

• The protection put in place cannot be turned off
from the guest

UEFI Firmware Bootloader Kernel Boot User Applications

Protected by Secure Boot Protected at runtime by
hypervisor

Protected by kernel

Runtime Kernel Dynamic Module

Threat Model

Attacker capabilities:
• Arbitrary read/write primitives in the Guest: they can read any

kernel memory address, and write any value to any kernel
memory address

• Cannot break into host/hypervisor: based on the strong vm
isolation and assume the hypervisor does not have other
security vulnerabilities.

We base this model on exploits found in the wild. For additional information, see PZ report on the Android binder
exploit.

https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html

Protect the guest kernel at runtime

• No unintended modifications of the kernel .text and
.rodata segments

• No code execution from other parts of kernel space
– e.g. data segment should be R/W but not X
– All executable memory should be non-writable

• No unintended modification of key kernel data
structures e.g:
– system call table
– control registers(CR0, CR4) or important MSR(like sysenter)
– IDT/GDT
– page tables

Why hypervisor as another security layer?

There is always risk protecting the guest from within the
guest:

• Rootkits can potentially gain the highest privilege and access all
of guest memory including the kernel

• Anything we put inside the guest kernel could be at risk but if we
keep the kernel safe at run time, all the security gates
implemented in the kernel will become more robust

Why hypervisor as another security layer?

• Hypervisor can control R/W/X for page-aligned guest
memory regions
– Two-Dimensional paging (EPT for Intel, NPT for AMD)

• Hypervisor can protect unsafe modification of CRs
and MSRs

• Hypervisor can protect key kernel page tables:
– HYPERVISOR-MANAGED LINEAR ADDRESS TRANSLATION

from Intel.
• Cloud industry already has all the guest VMs running

under the control of a hypervisor

https://software.intel.com/content/dam/develop/public/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf

Overall Plan - Boot Time: Guest

• New Guest Security kernel module:
– This module would be loaded at boot time
– It should be signed and protected by Secure

Boot so it can be trusted at boot time
– Check whether the hypervisor supports

integrity protection
– Identify the kernel code/data segments and

addresses of key kernel data structures
– Send all the information to the underlying

hypervisor and wait for the acknowledgement

Overall Plan - Boot Time: Hypervisor

• Hypervisor(KVM) + VMM:
– Decode the memory segment information sent

from the guest module
– Modify the second level address translation

table to set correct R/W/X bits for the specified
memory regions

– Configure the MSR/CR exits
– ACK the kernel module request and let it

continue to boot

Overall Plan - Run Time

• Hypervisor(KVM) + VMM:
– Handle EPT/NPT access permission violation VM

exit, user can configure one of the following:
• Kill the running VM and dump memory for analysis
• Log critical event

– Prohibit unintended CR/MSR modification.
– What about dynamic kernel modules?

• Guest kernel uses API exposed by the security module
to allocate a R/W memory region

• Copies the binary into it
• Once attestation is done, call API to change .text to R/X

to make sure it never gets changed again

• Memory Access: minimal
– Support through hardware: Intel EPT, AMD NPT
– If no violation happens, there should be no impact at all
– If a prohibited action happens, paying some extra cost on VM

exit to determine if the operation should be permitted
• CR/MSR: minimal

– We don’t expect lots of modification in the typical kernel run
time

• Page Table Translate (HLAT):
– Need Hardware support but currently limited to Intel Alder Lake

Performance Impact

Technical challenges

• How do we distinguish legitimate kernel
modifications?
– Static keys
– Kernel probes
– Kexec activity
– Dynamic kernel patching e.g. kpatch
– Alternative macro
– And more that we might not know about

• Need to disable those in the guest image or whitelist
these operations

• When set memory permissions, not all segments are
nicely aligned

https://www.kernel.org/doc/Documentation/static-keys.txt
https://www.kernel.org/doc/Documentation/kprobes.txt

Example

• We map entire kernel code segment as R/X.
– Guest OS: Debian 10

• Got EPT access violation right away:

• We dump the call stack and analyze it:

• Comes from text_poke:

• After removal of offending module, the guest runs smoothly
without any further violations

ffffffffb9a2d2a0 T text_poke
ffffffffb9efe570 T netif_receive_skb_list
ffffffffbaac8500 d netstamp_work

text_poke - Update instructions on a live kernel

https://elixir.bootlin.com/linux/latest/source/arch/x86/kernel/alternative.c#L947

Changes needed for KVM/QEMU

• Common interface to turn on protection:
– Currently we are using a specific MSR to configure the

protection
– A new hypercall would be ideal and show it is for VM only
– Once people agree on the interface, all hypervisors and

VMMs can implement the API to provide the same
protection regardless of where the VM lands

Changes needed for KVM/QEMU

• First RFC: add hypercall for KVM_HC_UCALL
– link: sends a message from guest to VMM
– Currently all hypercalls are handled inside KVM
– We want a common hypercall interface to pass control back

to the VMM
• Why have the VMM handle the requests:

– It sets up the guest memory mapping and should also
control/have knowledge of all permission settings

– Simplify support for live migration
– Keep KVM simple as it just needs to provide operations to

change the protection on EPTs

https://www.spinics.net/lists/kvm/msg214672.html

Changes needed for KVM/QEMU

• Follow up RFC: define common interface for turning
on protection

• Define a message from guest to VMM with
structures like:
enum class Opcode : uint32 {
 kUnset,
 kSetMemoryProtection,
 ...
};

enum class MemoryPermission : uint32 {
 kReadAndExecute,
 kReadAndWrite,
}

struct HbiRequest {
 uint32 version;
 Opcode op_code;
 union {
 struct {
 // Physical page number for the start of the protected
memory region.
 uint64 physical_page_number;
 // Length of the protected memory region in page size.
 uint64 num_of_pages;
 // permission for this memory region.
 MemoryPermission permission;
 } set_memory_protection_request;
 ...
 };
 ReturnCode return_code;
};

Changes needed for KVM/QEMU

• Extend KVM_SET_USER_MEMORY_REGION
– The current call only supports setting the memory as R/X
– We need support for R/W but not X

• Expose VM Exit on CR Modification
– CR0: PE, WP, PG, CD, NW, etc
– CR4: SMEP, SMAP, PAE, PGE, etc

• Support for Intel’s Hypervisor-Managed Linear
Address Translation (HLAT)

For the Future

• Guest security module could expose APIs for the
kernel to consume

• Guest kernel code can call the API to map key data
regions as read-only at boot time and the hypervisor
can guarantee they never change at runtime

• Current kernel security or driver modules can use
this to protect themselves

Other security considerations

Why can we trust Secure boot in Google Cloud?

• Guest firmware(UEFI) is immutable
• Integrity checks for secure boot done in VMM process not in guest
• Secure boot variables stored in a remote service

– no way to access/modify persistent memory used for variables

No potential SMM attacks

• SMM not supported for Google Cloud VMs

Return-oriented programming(ROP) attacks

• System still subject to ROP attacks to modify kernel page tables
• Attacker manages to change page table and point it to a different

executable memory region which is not protected by hypervisor

• Proposed HV enforced protection for guest memory
and system registers

• Proposed PV interface for protection enablement
• Secure by default, this hardening extend secure boot

and provides runtime protection for kernel integrity

Summary

Appendix: Security Analysis

● Hypervisor Based Integrity(HBI) blocks can many attacks that lead to
malicious code running in the kernel:
○ Non-executable bit in NPT prevents addition of new code pages.
○ Non-writable bit in NPT prevents modification of existing code

pages.
● HBI raises the cost of attacks, and pushes attackers to pursue data only

or ROP based attacks.
● HBI is a defense in depth measure, and should be enabled with additional

protection mechanisms, such as the “Kernel self-protection”.
● Future advances in kernel security, such as Kernel Control Flow Integrity

and Intel CET, may mitigate the ROP attacks.

https://www.kernel.org/doc/html/latest/security/self-protection.html
https://lwn.net/Articles/810077/

