
Applying Hardware-assisted Techniques to I/O 

Virtualization Framework

Yifei Jiang <jiangyifei@huawei.com>

Bo wan <wanbo13@huawei.com>

HA-IOV



Contents

 Background and Motivation 

 Overview of HA-IOV Architecture

 HA-IOV Based Emulated Virtual I/O Devices 

 HA-IOV Based Kernel Paravirtual I/O Devices 

 HA-IOV Based Userspace Paravirtual I/O Devices

 Conclusion and Future Work



Background

 High-performance computing in data centers

 I/O virtualization is one of the most crucial components to optimize physical resource 

utilization as well as I/O performance of VMs



Background

 High-performance computing in data centers

 I/O virtualization is one of the most crucial components to optimize physical resource 

utilization as well as I/O performance of VMs

 Existing I/O virtualization mechanisms

 Hardware-assisted Techniques, 

 Such as, SR-IOV and IOMMU

 Allowing VMs to direct pass-through access physical I/O devices. 

But complicates live migration.



Background

 High-performance computing in data centers

 I/O virtualization is one of the most crucial components to optimize physical resource 

utilization as well as I/O performance of VMs

 Existing I/O virtualization mechanisms

 Hardware-assisted Techniques, 

 Such as, SR-IOV and IOMMU

 Allowing VMs to direct pass-through access physical I/O devices. 

But complicates live migration.

 Software Techniques 

 Full emulated paradigm, such as UART in QEMU/KVMTOOL;

 Paravirtual paradigm, such as VirtIO-blk, VirtIO-net, and vHost;

 Polling mode, such as DPDK and SPDK;

However, full emulated and paravirtual paradigm suffer performance loss due to costly context 
switches between Guest and Host, while polling mode lowers the CPU utilization. 



Motivation – Emulated Virtual I/O Devices

 Trap and Emulate in Qemu



Motivation – Emulated Virtual I/O Devices

 Trap and Emulate in Qemu



Motivation – Emulated Virtual I/O Devices

 Trap and Emulate in Qemu



Motivation – Emulated Virtual I/O Devices

 Trap and Emulate in Qemu



Motivation – Emulated Virtual I/O Devices

 Trap and Emulate in Qemu



Motivation – Emulated Virtual I/O Devices

 Trap and Emulate in Qemu



Motivation – Emulated Virtual I/O Devices

 Trap and Emulate in Qemu



Motivation – Emulated Virtual I/O Devices

 Trap and Emulate in Qemu



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 VirtIO Based I/O Devices



Motivation – Paravirtual I/O Devices

 vHost Based I/O Devices



Motivation – Paravirtual I/O Devices

 vHost Based I/O Devices



Motivation – Paravirtual I/O Devices

 vHost-user Based I/O Devices



Motivation – Paravirtual I/O Devices

 vHost-user Based I/O Devices



Contents

 Background and Motivation 

 Overview of HA-IOV Architecture

 HA-IOV Based Emulated Virtual I/O Devices 

 HA-IOV Based Kernel Paravirtual I/O Devices 

 HA-IOV Based Userspace Paravirtual I/O Devices

 Conclusion and Future Work



Overview of HA-IOV Architecture

 HA-IOV for Full Emulated Virtual I/O Devices

 Costly context switch between Host and Guest, 
userspace and kernel.



Overview of HA-IOV Architecture

 HA-IOV for Full Emulated Virtual I/O Devices

 Costly context switch between Host and Guest, 
userspace and kernel.

 User-level Exceptions Redirection(UER): Alleviating 
context switch overheads by Directly delegating 
exceptions raised in Guest to be handled in Host user 
space bypassing KVM.



Overview of HA-IOV Architecture

 HA-IOV for Paravirtual I/O Devices in Kernel and Userspace

 VirtIO & vHost ：Guest traps out to send IPI 
causing context switch overheads

 vHost-user ：polling threads prevent other 
threads running on the polling CPU cores to 
lower the CPU utilization



Overview of HA-IOV Architecture

 HA-IOV for Paravirtual I/O Devices in Kernel and Userspace

 VirtIO & vHost ：Guest traps out to send IPI 
causing context switch overheads

 vHost-user ：polling threads prevent other 
threads running on the polling CPU cores to 
lower the CPU utilization

 Virtual Event Interrupt （VEI）：Guest can send 
interrupts without trapping out to KVM.

 Hardware-assisted Context Switch （HCS）：user-
level interrupt handlers can be woken up to handle 
interrupts in faster way bypassing kernel scheduler.



Implementation Prerequisite

 Privilege Mode In RISC-V Architecture



Implementation Prerequisite

 Privilege Mode In RISC-V Architecture

 N Extension

 Adding RISC-V user-level interrupt and exception handler

 Hardware can transfer control directly to a user-level trap handler without invoking the outer 
execution environment, such as KVM

 Further Extending

 Directly redirect exception occurs in VS-mode/VU-mode to U-mode

 Interrupt VS-mode/VU-mode by user-level interrupts



Contents

 Background and Motivation 

 Overview of HA-IOV Architecture

 HA-IOV Based Emulated Virtual I/O Devices 

 HA-IOV Based Kernel Paravirtual I/O Devices 

 HA-IOV Based Userspace Paravirtual I/O Devices

 Conclusion and Future Work



HA-IOV for Emulated Virtual I/O Devices

 Overview



HA-IOV for Emulated Virtual I/O Devices

 Overview



HA-IOV for Emulated Virtual I/O Devices

 Extended User-level Exception Redirection Mechanism

 Reusing CSRs of N extension

Registers Description

ustatus Keeping track of and controls the hart’s current operating state in userspace

uscratch The pointer of data structure of user-level exception handler

uepc The instruction that raises the user-level exception

ucause The reason to cause the user-level exception

utvec The entry address of handling user-level exceptions 

utval The related value the upec operates on, such mmio address



HA-IOV for Emulated Virtual I/O Devices

 Extended User-level Exception Redirection Mechanism

 Reusing CSRs of N extension

 Delegating the exception in Guest to user-level trap handler.

Delegation Types Modification Description

huedeleg Register Added Hypervisor user exception delegation register

ustatus Register Extended Add two fields, called UPV and UPP, in ustatus

URET Instruction Extended Allow to return to VU-mode/VS-mode from U-mode

hstatus Register Extended Add a field, called HUR, in hstatus



HA-IOV for Emulated Virtual I/O Devices

 Extended User-level Exception Redirection Mechanism

 Reusing CSRs of N extension

 Delegating the exception in Guest to user-level trap handler.

 Two MMIO page fault exceptions are added.

Delegation Types Modification Description

huedeleg Register Added Hypervisor user exception delegation register

ustatus Register Extended Add two fields, called UPV and UPP, in ustatus

URET Instruction Extended Allow to return to VU-mode/VS-mode from U-mode

hstatus Register Extended Add a field, called HUR, in hstatus

Exceptions Types Modification Description

Load MMIO page fault Trap Code Added Page fault caused by write MMIO in Guest

Store MMIO page fault Trap Code Added Page fault caused by read MMIO in Guest

MMIO field PTE Format Extended Add a field, called MMIO, in PTE



HA-IOV for Emulated Virtual I/O Devices

 Evaluation

 Environment

1. Hisilicon Kunpeng 920 2600MHz

2. RISC-V QEMU Emulator V0.5.1

3. RISC-V KVMTOOL V1

4. RISC-V KVM V10

5. RISC-V HostOS with 4 CPU 2048M

6. RISC-V GuestOS with 1 CPU 1024M

 Experiments

Output 1K, 10K, 50K, 100K lines of “hello,world”to
stdout (terminal)

 Results

HA-IOV achieves nearly 2X faster than the original 
one (the Lower the better)

7
.7

2
 

6
5

.4
5

 

3
5

5
.4

9
 

6
9

1
.0

7
 

2
.2

6
 

2
4

.7
3

 1
1

7
.9

3
 2

4
6

.9
5

 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

100

200

300

400

500

600

700

800

1000 10000 50000 100000

B
o

o
st

 T
im

es

U
A

R
T

 O
u

tp
u

t 
T

im
e 

(s
)

Lines of  output "hello,world"

UART

HA-IOV

Boost



Contents

 Background and Motivation 

 Overview of HA-IOV Architecture

 HA-IOV Based Emulated Virtual I/O Devices 

 HA-IOV Based Kernel Paravirtual I/O Devices 

 HA-IOV Based Userspace Paravirtual I/O Devices

 Conclusion and Future Work



HA-IOV for Paravirtual I/O Devices in Kernel

 Overview

 vHost：Guest traps out to send IPI causing 
context switch overheads



HA-IOV for Paravirtual I/O Devices in Kernel

 Overview

 Virtual Event Interrupt (VEI) : allowing Guest to 
send supervisor interrupt without existing to notify 
Host kernel threads in target CPU

 vHost：Guest traps out to send IPI causing 
context switch overheads



HA-IOV for Paravirtual I/O Devices in Kernel

 Supervisor Virtual Event Interrupts

 Mapping and Registration Information

 VEIID (VEI Identity, or VEI Physical Number）

 VEIRQ (VEI Request Number)

 Qemu provides VEIRQ and VMID

 Kernel provides VEIID and CPUID

 VEIRQ+VMID  VEIID+CPUID



HA-IOV for Paravirtual I/O Devices in Kernel

 Supervisor Virtual Event Interrupts

 Mapping and Registration Information

 VEIID (VEI Identity, or VEI Physical Number）

 VEIRQ (VEI Request Number)

 Qemu provides VEIRQ and VMID

 Kernel provides VEIID and CPUID

 VEIRQ+VMID  VEIID+CPUID

 Routing Steps

1. Guest sends VEI by writing VEIRQ to a new 
added CPU register. The register is allowed to 
access in Guest, so there is no need for Guest 
to trap out.

2. VMID is obtained by VEI module in CPU to 
further query the registered mapping 
information presented in the interrupt 
controller.

3. When the target CPUID is found, a physical 
interrupt identified by VEIID is delivered to the 
Host kernel threads in target CPU.



HA-IOV for Paravirtual I/O Devices in Kernel

 Evaluation

 Environment

1. Hisilicon Kunpeng 920 2600MHz

2. RISC-V QEMU Emulator V0.5.1

3. RISC-V QEMU V0.5.1

4. RISC-V KVM V10

5. RISC-V HostOS with 4 CPU 2048M

6. RISC-V GuestOS with 1 CPU 1024M

 Experiment

NetPerf configured with UDP and TCP

 Results

Performance of HA-IOV based vHost-net increase over 
100% when message sizes are small (the higher the 
better)

0%

40%

80%

120%

160%

0

50

100

150

200

2KiB 4KiB 8KiB 16KiB 32KiB 64KiB

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t 

B
an

d
w

id
th

 (
M

b
it

s/
se

c)

TCP_STREAM message sizes                                                        

Native vHost-net

HA-IOV vHost-net

Percent

0%

40%

80%

120%

160%

0

20

40

60

80

100

2KiB 4KiB 8KiB 16KiB 32KiB 64KiB P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

B
an

d
w

id
th

 (
M

b
it

s/
se

c)

UDP_STREAM message sizes                                                        

Native vHost-net

HA-IOV vHost-net

Percent



Contents

 Background and Motivation 

 Overview of HA-IOV Architecture

 HA-IOV Based Emulated Virtual I/O Devices 

 HA-IOV Based Kernel Paravirtual I/O Devices 

 HA-IOV Based Userspace Paravirtual I/O Devices

 Conclusion and Future Work



HA-IOV for Paravirtual I/O Devices in Userspace

 Overview

 Sharing Memory : GuestOS interacts with user-
level I/O devices via shared memory

 Polling mode : VirtIO backend implements as 
polling threads, which keep other threads 
running on the polling CPU core.



HA-IOV for Paravirtual I/O Devices in Userspace

 Overview

 Sharing Memory : GuestOS interacts with user-
level I/O devices via shared memory

 Polling mode : VirtIO backend implements as 
polling threads, which keep other threads 
running on the polling CPU core.

 User-level VEI: VirtIO backend are implemented as 
user-level interrupt handlers, which are triggered by 
user-level interrupts.

 Hardware-assisted context switch (HCS) : Swapping 
the memory space and data structure for interrupt 
handlers.



HA-IOV for Paravirtual I/O Devices in Userspace

 User-level Virtual Event Interrupt

 Register Information

uscratch , utvec, 

suscratch (kernel data structure), 

suatp (memory space)



HA-IOV for Paravirtual I/O Devices in Userspace

 User-level Virtual Event Interrupt

 Register Information

uscratch , utvec, 

suscratch (kernel data structure), 

suatp (memory space)

 Prepare Context for interrupt handlers

<uscratch, utvec, suscratch, suatp> (IC) 
<uscratch, utvec, suscratch, suatp> (CPU)



HA-IOV for Paravirtual I/O Devices in Userspace

 User-level Virtual Event Interrupt

 Register Information

uscratch , utvec, 

suscratch (kernel data structure), 

suatp (memory space)

 Prepare Context for interrupt handlers

<uscratch, utvec, suscratch, suatp> (IC) 
<uscratch, utvec, suscratch, suatp> (CPU)

 When handling a user-level interrupt

<suscratch, suatp> (CPU) 

<sscratch, satp> (CPU)



HA-IOV for Paravirtual I/O Devices in Userspace

 User-level Interrupt Handler

 Consisting of a interrupt handler and a user 

thread

1. Both sharing same memory space and kernel data 
structure 

2. The interrupt handler runs by HCS

3. The user thread runs by kernel scheduler.

4. Scheduling in the interrupt handler is disabled, while 
the user thread can be scheduled out



HA-IOV for Paravirtual I/O Devices in Userspace

 User-level Interrupt Handler

 Consisting of a interrupt handler and a user 

thread

1. Both sharing same memory space and kernel data 
structure 

2. The interrupt handler runs by HCS

3. The user thread runs by kernel scheduler.

4. Scheduling in the interrupt handler is disabled, while 
the user thread can be scheduled out

 Priority of VS-mode/VU-mode is defined to be 

less than U-mode

Running VMs is able to be interrupted by user-level 
interrupts for quickly handling user-level interrupts. 

 If the target CPU core is in S-mode

The user thread will be scheduled by door bell interrupt
raised by user-level vei

The interrupt handler is then triggered by the user-level 
vei to run I/O process  by interrupting the user thread



HA-IOV for Paravirtual I/O Devices in Userspace

 Evaluation

 Environment

1. Hisilicon Kunpeng 920 2600MHz

2. RISC-V QEMU Emulator V0.5.1

3. RISC-V KVMTOOL V1

4. RISC-V KVM V10

5. RISC-V HostOS with 4 CPU 2048M

6. RISC-V GuestOS with 1 CPU 1024M

 Experiment

FIO configured with read, write, 

randread and randwrite

 Results

Performance of HA-IOV based virtio-blk increase
20% on average when message sizes are small 
(the higher the better)

0%

5%

10%

15%

20%

25%

0
2
4
6
8

10
12
14
16

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

B
an

d
w

it
d

h
 (

M
B

/S
)

Native VirtIO-blk

HA-IOV VirtIO-blk

Percent

0%

5%

10%

15%

20%

25%

0

2

4

6

8

10

12

14

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

B
an

d
w

it
d

h
 (

M
B

/S
)

Native VirtIO-blk

HA-IOV VirtIO-blk

Percent



Contents

 Background and Motivation 

 Overview of HA-IOV Architecture

 HA-IOV Based Emulated Virtual I/O Devices 

 HA-IOV Based Kernel Paravirtual I/O Devices 

 HA-IOV Based Userspace Paravirtual I/O Devices

 Conclusion and Future Work



Conclusion and Future Work

 Conclusion

 Proposing hardware-assisted technique for I/O virtualization, including UER, VEI and HCS.

 Enhancing performance of full emulated I/O devices and paravirtual I/O devices in both kernel 

and userspace.

 Improving utilization of physical CPU resources by freeing up polling CPU cores.



Conclusion and Future Work

 Conclusion

 Proposing hardware-assisted technique for I/O virtualization, including UER, VEI and HCS.

 Enhancing performance of full emulated I/O devices and paravirtual I/O devices in both kernel 

and userspace.

 Improving utilization of physical CPU resources by freeing up polling CPU cores.

 Future work

 Optimization of VEI map query latency in hardware

 Providing CPU affinity policies of VEI for balancing loads

 Enhancing security of HA-IOV



Copyright©2018 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive 

statements including, without limitation, statements regarding 

the future financial and operating results, future product 

portfolio, new technology, etc. There are a number of factors that 

could cause actual results and developments to differ materially 

from those expressed or implied in the predictive statements. 

Therefore, such information is provided for reference purpose 

only and constitutes neither an offer nor an acceptance. Huawei 

may change the information at any time without notice. 

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。

Bring digital to every person, home, and 
organization for a fully connected, 
intelligent world.

Thank you.


