
Virtual Device Fuzzing in QEMU

All content here, not owned by other parties, CC BY 4.0

Alexander Bulekov, Boston University
Bandan Das, Red Hat

QEMU and Virtual Devices

● Virtual Devices enable guest I/O
● LOC: ~500k compared to TLOC: 1.7M
● VIRTIO, emulated Device Fuzzing in QEMU
● hardware devices
● A potential attack surface

○ Hardening - an ongoing challenge Hypervisor

Guest
OS

Guest
OS

Guest
OS

Appli
catio
ns

App App App

Hardware

Virtual

Devices

App

Guest
OS

Hypervisor

2

● Vulnerabilities are the foundations for
attacks!

● Static Analysis
○ Check for Syntax, Semantics
○ Offline run
○ False positives

● Dynamic Analysis
○ Fuzzing
○ Feeding “random” data at runtime
○ Integration challenges
○ False positives ?

● Complementary

Code Analysis

3

Fuzzing in QEMU - an outline
● qcow2 fuzzer

○ Maria Kustova, 2014

● Megasas MMIO write segfault
○ AFL, Salva Peiró, 2015

● Virtio Device Fuzzing using AFL
○ Dmitrii Stepanov, KVM Forum, 2019

● Google Summer of Code 2019

4

● QEMU integration
○ Making it easy for developers to fuzz

● Continuous Integration
○ Catch bugs in new code, prior to the next release

● Hardware
○ For fuzzing runs

Missing pieces

5

QEMU fuzzing - Challenges
● Large input space

○ Devices IO happens in across multiple channels
● Fuzzing framework

○ Need something familiar, but reasonably performant
● State changes

○ Devices accumulate state
○ If we want to reliably reproduce bugs, the fuzzer needs

to start with a clean slate for each input

6

Fuzzing framework
● American Fuzzy Lop
● libfuzzer

○ LLVM based and integrated into Google’s oss-fuzz infrastructure
● Prebuilt fuzzers are well suited for fuzzing single or few file

inputs
● A custom fuzzer for QEMU ?

○ Better integration
○ Parallel problem: Kernel fuzzing and syzkaller

7

8

virtual_device(?)

Port IO

MMIO
DMA

The Input Space is Enormous!

State rewinds
● To get reliable results, fuzzing

input data needs a consistent
state
○ Reboot ?
○ Snapshots ?
○ Fork ?

9

Recap: Testing Devices in QEMU
● qtest

○ QEMU system process listens to commands from a
qtest client, such as inw, outl, readq, clock_step

○ QTest test-cases usually use libqtest to configure,
initialize and send qtest commands to the QEMU
system process.

● libqos
○ Testing complex devices is difficult with the qtest IO

primitives. Manually perform PCI enumeration,
device initialization, allocation of space for DMA
data...

○ libqos builds upon libqtest to implement
standardized driver-like interfaces for common
needs, such as bus-access, RAM allocation, etc. 10

outl 0xcf8 0x80001018
outl 0xcfc 0xe0800000
outl 0xcf8 0x80001020
outl 0xcf8 0x80001004
outw 0xcfc 0x7
writeq 0xe0801024 0x10646c00776c6cff
writeq 0xe080102d 0xe0801000320000
writeq 0xe0801015 0x12b2901ba000000
write 0x10646c02 0x1 0x2c
write 0x999 0x1 0x25
...

 QE1000E_PCI *d = (QE1000E_PCI *) obj;
 uint32_t val;

 /* Enable the device */
 qpci_device_enable(&d->pci_dev);

 /* Reset the device */
 val = e1000e_macreg_read(&d->e1000e,
 E1000E_CTRL);
 ...

Fuzzing a Device ≈ Writing a new QTest test

11

/* Uses simple qtest commands and reboots to reset state */
fuzz_add_target(&(FuzzTarget){
 .name = "i440fx-qtest-reboot-fuzz",
 .description = "Fuzz the i440fx using raw qtest commands and "
 "rebooting after each run",
 .get_init_cmdline = i440fx_argv,
 .fuzz = i440fx_fuzz_qtest});

/* Uses libqos and forks to prevent state leakage */
fuzz_add_qos_target(&(FuzzTarget){
 .name = "i440fx-qos-fork-fuzz",
 .description = "Fuzz the i440fx using raw qtest commands and "
 "rebooting after each run",
 .pre_vm_init = &fork_init,
 .fuzz = i440fx_fuzz_qos_fork,},
 "i440FX-pcihost",
 &(QOSGraphTestOptions){}
);

12

static void ioport_fuzz_qtest(QTestState *s,
 const unsigned char *Data, size_t Size) {
 /*
 * loop over the Data, breaking it up into actions. each action has an
 * opcode, address offset and value
 */
 struct {
 uint8_t opcode;
 uint8_t addr;
 uint32_t value;
 } a;

 while (Size >= sizeof(a)) {
 memcpy(&a, Data, sizeof(a));
 uint16_t addr = a.addr % 2 ? I440FX_PCI_HOST_BRIDGE_CFG :
 I440FX_PCI_HOST_BRIDGE_DATA;
 switch (a.opcode % ACTION_MAX) {
 case WRITEB:
 qtest_outb(s, addr, (uint8_t)a.value);
 break;
 case WRITEW:
 qtest_outw(s, addr, (uint16_t)a.value);
 break;
...

13

static void pciconfig_fuzz_qos(QTestState *s, QPCIBus *bus,
 const unsigned char *Data, size_t Size) {
 /*
 * Same as ioport_fuzz_qtest, but using QOS. devfn is incorporated into the
 * value written over Port IO
 */
 struct {
 uint8_t opcode;
 uint8_t offset;
 int devfn;
 uint32_t value;
 } a;

 while (Size >= sizeof(a)) {
 memcpy(&a, Data, sizeof(a));
 switch (a.opcode % ACTION_MAX) {
 case WRITEB:
 bus->config_writeb(bus, a.devfn, a.offset, (uint8_t)a.value);
 break;
 case WRITEW:
 bus->config_writew(bus, a.devfn, a.offset, (uint16_t)a.value);

14

Generic Device Fuzzer
● Sometimes writing a fuzzer tailored for a device is tough
● We built a General Device Fuzzer that will fuzz devices over MMIO,

Port IO and DMA
● To use, simply specify the arguments and object/MemoryRegion

names you want to fuzz
○ QEMU_FUZZ_ARGS=”-M q35 -nodefaults -device

e1000,netdev=net0 -netdev user,id=net0”
○ QEMU_FUZZ_OBJECTS=’e100*’

15

outl 0xcf8 0x80001010
outl 0xcfc 0xe1020000
outl 0xcf8 0x80001014
outl 0xcf8 0x80001004
outw 0xcfc 0x7
outl 0xcf8 0x800010a2
writeb 0xe102003b 0xff
writel 0xe1020118 0xffffffff
writel 0xe1020420 0xffffffff
writel 0xe1020424 0xffffffff
writeb 0xe102042b 0xff
write 0xe1020429 0x5 0x0055c5e5c0
write 0x5c041 0x3 0x0402e1
write 0x5c048 0x1 0x8a
write 0x5c04a 0x1 0x31
write 0x5c04b 0x1 0xff
write 0xe1020403 0x1 0xff

Generic Device Fuzzer
● Comes with scripts to convert

crashing inputs into QTest scripts
● Automatically minimize the crash
● Crash reproducers can be included

in email text, or even in a commit
message

16

OSS-Fuzz

17

The fuzzer has found:

- Old bugs that did not have reliable reproducers:
- lsi_scsi bug from 2011.
- UHCI bug from 2015

- Bugs that revealed architectural issues:
- DMA re-entrancy issues
- Memory access API

- > 50 reports on launchpad. 6 CVEs to date
- Combine with sanitizers to find heap-overflow,

UAF, alignment, etc bugs

Open question: How to handle automated bug
reports from oss-fuzz?

18

Bugs

19

Fuzzing QEMU: The Future
● Fuzzing device backend code (SPICE, VNC, SLiRP, ...)

● Fuzzing migration/{Save, LoadVM} handlers and reboots

● Fuzzing to find timing-sensitive/double-fetch bugs

● Bugs that require more interactions than can fit in a single input

● Improving kernel fuzzing of virtualization-related components.

● Regression testing based on bug reproducers

● Multiprocess QEMU, vhost-user, vfio…

● Better ways to reset state between inputs

20

Stefan Hajnoczi

Paolo Bonzini

Darren Kenny

Thomas Huth

Philippe Mathieu-Daudé
Dima Stepanov

Jon Maloy

Lidong Chen

{alxndr,bsd} on #qemu

alxndr@bu.edu

bsd@redhat.com

Li Qiang

Interested?

mailto:alxndr@bu.edu
mailto:bsd@redhat.com

