
QEMU snapshots are slow. Really?
Denis V. Lunev

den@openvz.org

Contents

● Internal snapshots
● Performance results
● Future

○ background snapshot
○ asynchronous revert to snapshot

Internal snapshots - ‘savevm’/’loadvm’
Important details

Motivation (a long time ago, in a galaxy far-far away…)

● Downtime for 8 GB VM: 300 seconds
● Storage capacity: 150 Mb/sec
● Really achieved speed: 27 Mb/sec

Create snapshot

● Stop VM CPUs
● Commit all pending IO
● Save CPU/devices state
● Save RAM
● Make disk snapshot
● Start VM CPUs

QEMU IO pattern (not so bad?)
virsh qemu-monitor-command vm --hmp trace-event qcow2_writev_start_req on

● writes are sequential
● write size is not so bad

qcow2_writev_start_req co 0x55ee7792fa30 offset 0x109a2e7c3c bytes 131328
qcow2_writev_start_req co 0x55ee78176f40 offset 0x109a307d3c bytes 131337
qcow2_writev_start_req co 0x55ee77b1b710 offset 0x109a327e45 bytes 131328
qcow2_writev_start_req co 0x55ee7858e010 offset 0x109a347f45 bytes 53360

Linux real IO pattern
blktrace -d /dev/sda -o - | blkparse -i -

 8,0 4 40 0.120622778 677708 D R 347181323 + 1 [qemu-kvm]

 8,0 3 98 0.121070367 0 C R 347181323 + 1 [0]

 8,0 3 106 0.121181060 677708 D R 347181580 + 1 [qemu-kvm]

 8,0 3 107 0.121230086 0 C R 347181580 + 1 [0]

 8,0 4 48 0.121512160 678123 D WS 347181323 + 258 [qemu-kvm]

 8,0 3 108 0.121963520 0 C WS 347181323 + 258 [0]

 8,0 4 56 0.122192028 677708 D R 347181580 + 1 [qemu-kvm]

 8,0 3 109 0.122592687 0 C R 347181580 + 1 [0]

 8,0 3 117 0.122700027 677708 D R 347181837 + 1 [qemu-kvm]

 8,0 3 118 0.122980774 0 C R 347181837 + 1 [0]

 8,0 4 64 0.123417678 678123 D WS 347181580 + 258 [qemu-kvm]

 8,0 3 119 0.123871902 0 C WS 347181580 + 258 [0]

IO pattern analysis

● Synchronous non-aligned operations
● Read-modify-write IO pattern
● Non-cached IO is a problem?

Original request

512 bytes 512 bytes

QEMU and non-cached IO

● ‘Native’ AIO worker, no additional threads
● Predictable latency
● Good behavior under memory overcommit

Faster snapshot

● Data is written sequentially allocating new clusters
● Longer but limited asynchronous queue
● Cluster aligned IO

Write

clusterN cluster N+1

Fallocate

QEMU snapshot architecture

• Migration code is byte oriented
• Originally written for IOChannel
• Block Driver Core
• Asynchronous write queue

Migration

QEMUFile

Block Driver Core

BlockBackend

Block Driver

Snapshot creation time (lower is better)

Faster revert to snapshot

● Rotational disks itself are good with read-ahead
● Read sequentially with big enough data chunk
● Prefetch some additional chunks in background
● Issue read request

○ In read completion (if there is spare space in buffer)
○ Once some buffer space is freed

● No request queue!

Revert to snapshot

Conclusions

● Good queue for write is mandatory
● Cluster aligned IO operation is a must
● Rotational disks have very good read-ahead in HW
● Sequential IO for rotational media is more

important than longer queue
● All these tricks are a bandaid! The guest is still

stopped for the whole operation

Background snapshot
Brilliant future to come tomorrow or after tomorrow. May be later….

Create background snapshot

● Stop VM CPUs
● Commit all pending IO
● Save CPU/devices state
● Protect VM memory for write
● Make disk snapshot
● Start VM CPUs
● Store VM memory in background
● Save memory pages written by guest out of order

Implementation state

● Based on write-protect with userfaultfd
● Support is included into Linux kernel 5.7
● QEMU code as unit test for kernel
● QCOW2 driver disallow writing into to snapshots at

the same time
● Migration stream is saved outside at the moment

Fast snapshot revert (postcopy revert)

● Load CPU/devices state
● Start VM
● Load each accessed guest page on page fault
● Fill memory from file in background

QCOW2 as storage

● Parse memory section of migration stream
● Drop it from migration stream
● Save content as data into separate QCOW2 image
● Save migration stream as usual

www.virtuozzo.com

@VirtuozzoInc

www.linkedin.com/company/virtuozzo

Questions?

