Virtuozzo

QEMU snapshots are slow. Really?

Denis V. Lunev
den@openvz.org

B

Contents

e [nternal snapshots
e Performance results

e [uture
o background snapshot
o asynchronous revert to snapshot

Virtuozzo

Internal snapshots - ‘savevm/loadvm

Important details

B

Motivation (a long time ago, in a galaxy far-far away...)

e Downtime for 8 GB VM: 300 seconds
e Storage capacity: 150 Mb/sec
e Really achieved speed: 27 Mb/sec

Virtuozzo

B

Create snapshot

Stop VM CPUs

Commit all pending 10
Save CPU/devices state
Save RAM

Make disk snapshot
Start VM CPUs

Virtuozzo

I_ QEMU IO pattern (not so bad?)

virsh gemu-monitor-command vm --hmp trace-event qcow?2_writev_start_req on

e writes are sequential
e write size is not so bad

gcow2_writev_start_req co 0x55ee7792fa30 offset 0x109a2e7c3c bytes 131328
gcow2_writev_start_req co 0x55ee78176f40 offset 0x109a307d3c bytes 131337
gcow2_writev_start_req co 0x55ee77b1b710 offset 0x109a327e45 bytes 131328
gcow2_writev_start_req co 0x55ee7858e010 offset 0x109a347f45 bytes 53360

Virtuozzo

I_ Linux real 10O pattern

blktrace -d /dev/sda -o - | blkparse -i -

80 4 40
80 3 98
80 3 106
80 3 107
80 4 48
80 3 108
80 4 56
80 3 109
80 3 117
80 3 118
80 4 64
80 3 119
Virtuozzo

0.120622778
0.121070367
0.121181060
0.121230086
0.121512160
0.121963520
0.122192028
0.122592687
0.122700027
0.122980774
0.123417678
0.123871902

677708
0
677708
0
678123
0
677708
0
677708
0
678123
0

N O N onNn TN ONn oo N O

R 347181323 + 1 [gemu-kvm]

R 347181323 + 1 [0]

R 347181580 + 1 [gemu-kvm]

R 347181580 + 1 [0]

WS 347181323 + 258 [gemu-kvm]
WS 347181323 + 258 [0]

R 347181580 + 1 [gemu-kvm]

R 347181580 + 1 [0]

R 347181837 + 1 [gemu-kvm]

R 347181837 + 1 [0]
WS 347181580 + 258 [gemu-kvm]
WS 347181580 + 258 [0]

B

|O pattern analysis

e Synchronous non-aligned operations
e Read-modify-write |O pattern
e Non-cached IO is a problem?

Original request

512 bytes 512 bytes

Virtuozzo I

B

QEMU and non-cached IO

e ‘Native’ AIO worker, no additional threads
e Predictable latency
e Good behavior under memory overcommit

BB non-cached BB cached

Virtuozzo

B

Faster snapshot

e Data is written sequentially allocating new clusters
e Longer but limited asynchronous queue
e C(luster aligned 10

Write Fallocate

clusterN cluster N+1

Virtuozzo

B

QEMU snapshot architecture

Virtuozzo

Migration code is byte oriented
Originally written for IOChannel
 Block Driver Core
Asynchronous write queue

|
|
|

Migration

< =

QEMUFile

~ -

BlockBackend

< =

-

[Block Driver }<

-

Block Driver Core

B

Snapshot creation time (lower is better)

NVME HDD

B od B New B od B New
15 40

30
10

cached non-cached cached non-cached

Virtuozzo

B

Faster revert to snapshot

Rotational disks itself are good with read-ahead
Read sequentially with big enough data chunk
Prefetch some additional chunks in background

Issue read request
o Inread completion (if there is spare space in buffer)
o Once some buffer space is freed

e No request queue!

Virtuozzo

B

Revert to snapshot

NVME HDD

B od B New B od B New
40 10

30
20

10

cached non-cached cached non-cached

Virtuozzo I

B

Conclusions

Good queue for write is mandatory

Cluster aligned 10 operation is a must

Rotational disks have very good read-ahead in HW
Sequential IO for rotational media is more
important than longer queue

All these tricks are a bandaid! The guest is still
stopped for the whole operation

Virtuozzo

Background snapshot

Brilliant future to come tomorrow or after tomorrow. May be later....

B

Create background snapshot

Stop VM CPUs

Commit all pending 10

Save CPU/devices state

Protect VM memory for write

Make disk snapshot

Start VM CPUs

Store VM memory in background

Save memory pages written by guest out of order

Virtuozzo I

B

Implementation state

Based on write-protect with userfaultfd

Support is included into Linux kernel 5.7

QEMU code as unit test for kernel

QCOW?2 driver disallow writing into to snapshots at
the same time

Migration stream is saved outside at the moment

Virtuozzo I

B

Fast snapshot revert (postcopy revert)

Load CPU/devices state

Start VM

Load each accessed guest page on page fault
Fill memory from file in background

Virtuozzo

I_ QCOW?2 as storage

Parse memory section of migration stream

Drop it from migration stream

Save content as data into separate QCOW2 image
Save migration stream as usual

Virtuozzo

Questions?

y 4 .
V www.virtuozzo.com

G @Virtuozzolnc

@ www.linkedin.com/company/virtuozzo

Virtuozzo

