
Dynamic paravirt lock-ops
For a dynamic world
—
Ankur Arora

ankur.a.arora@oracle.com

1 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

Contents
—

• Motivation

• pv_lock_ops state-machine

• What does switching pv_lock_ops involve?
• Patching mechanism: INT3

• V1 patchset

• V2 design

2 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

Guests should be more dynamic
—

KVM_HINTS_REALTIME=1 => native pv_lock_ops1

KVM_HINTS_REALTIME=0 => paravirt pv_lock_ops2

A guest that starts with KVM_HINTS_REALTIME, and then becomes
oversubscribed: typically ends in softlockups.

The recommended fix is that a host should only advertise KVM_HINTS_REALTIME
if it can guarantee it for the lifetime of the guest.

1Hypervisor specific ops are paravirt_nop()
2KVM’s hypervisor specific ops are kvm_wait(), kvm_vcpu_kick()

3 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

pv_lock_ops state-machine
Queued spinlocks are based on MCS locks

—

vcpu_is_preempted

queued_spin_lock()

queued_spin_unlock()

queued_spin_lock_slowpath() wait

kick

4 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

Why don’t we just use paravirt locks all the time?
—

Unlock fastpath

• movb $0, (%rdi)
• lock cmpxchg %dl,(%rdi)

Paravirt queued_spin_lock_slowpath are pessimistic by default

5 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

What does switching pv_lock_ops involve?
Switch all call-sites, kernel and modules, for all 5 interfaces atomically3

—
Transform back and forth between instruction sequences like this one for
queued_spin_unlock

__native_queued_spin_unlock:
0: c6 07 00 movb $0x0,(%rdi)
3: 0f 1f 40 00 nopl 0x0(%rax)

__pv_queued_spin_unlock:
0: e8 31 e6 ff ff callq 0xffffffffffffe636
5: 66 90 xchg %ax,%ax

3queued_spin_unlock() is almost always inlined
6 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

What does switching pv_lock_ops involve? (contd.)
—

• Other ops might go from CALL+NOP2 (pv_lock_ops.wait = kvm_wait())
to NOP7 (pv_lock_ops.wait = paravirt_nop()) or back

• Spinlocks cannot sleep:

– So no references to stale pv_lock_ops opcodes on the stack

7 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

Active users
... while we are patching

—
Contexts

• Tasks

• Softirqs

• Interrupt handlers

– IPIs in particular get used from text_poke_bp() while patching
• NMI handlers

All of the above, but nested.

Remember, I said spinlocks (thus pv_lock_ops) cannot sleep.
• They can get context switched out in the hypervisor

8 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

Mechanism: INT3
—

Patching while potentially executing code that you are patching. Enter INT3.
• Standard Linux mechanism for modifying cross-modifying code

• Single byte breakpoint instruction: opcode 0xCC
• Used as a barrier at entry

– Assuming a single entry point to instruction sequence

• If this barrier is hit, the control flow shifts to an INT3 handler

– Which emulates the original target or the new

9 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

V1: approach
—

Use stop_machine()
• lock-step state-machine on all the VCPUs

– Inner loop on CPU-patcher and all the secondary CPUs waiting to synchronize

at each step.

– interrupts are disabled

– no IPIs needed for sync_core()
– no pv_lock_ops on the stack: all VCPUs are executing in stop_machine()

• NMIs are the only risk

– the INT3 handler also implements a subset of this state-machine, so we can

make forward progress if the primary or a secondary CPU hit an NMI4

4Multiple simultaneous NMIs complicate the handling somewhat.
10 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

V1: state-machine
—

CPU-patcher CPU-x
/* CALL, NOP2: e8 31 e6 ff ff 66 90 */

write-INT3 /* INT3, ... : cc 31 e6 ff ff 66 90 */
sync() smp-cond-load-acquire(state == INT3-written)

sync()
write-rest /* INT3, ... : cc 07 00 0f 1f 40 00 */
sync() smp-cond-load-acquire(state == rest-written)

sync()
write-first-byte /* MOV, NOP4 : c6 07 00 0f 1f 40 00 */
sync() smp-cond-load-acquire(state == first-written)

sync()

11 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

V1: last words
It worked, but ... stop_machine()
—

A review comment said: ”bonghits crazy code.”

Which was pretty understated, in hindsight.

12 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

V2: design
Where I magically discover a less crazy way to do this...

—

Step1: prefix INT3

• Use INT3 (0xCC) as a site-local barrier; everywhere
• Allows us to enforce atomicity while patching multiple sites

Step2: global ”barrier”

• Divides the guest state into pre and post stages: old and new pv_lock_ops
• Meanwhile the INT3 handler emulates old or new pv_lock_ops

Step3: finish patching

• Use the protection offered by INT3 (0xCC) to finish writing the new opcodes

13 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

V2 design: global barrier
Sure, but how...

—

The transition point in old to new pv_locks_ops requires a point where no ops
are executing.

A CPU after crossing the barrier:

• Counts all spinlocks5 under execution

• Counting happens in the INT3 handler

5Figuratively, not literally. We have no way of counting locks, we can, however, count entry in
queued_spin_slowpath() and exit in queued_spin_unlock()

14 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

V2 design: global barrier
—

atomic_t barrier_cpus, active_lock_ops;
DEFINE_PER_CPU(int, paravirt_switch_barrier);
void patch_barrier(void) {

this_cpu_write(paravirt_switch_barrier, 1);
atomic_inc(&barrier_cpus);
/* Count active_lock_ops if this_cpu_read(paravirt_switch_barrier). */

}

Property that needs to hold:

atomic_read(&barrier_cpus) == num_online_cpus
&& atomic_read(&active_lock_ops) == 0;

Once this holds, INT3 handling can start emulating the new pv_lock_ops and move to

Step 3.

15 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

V2 design: more on counting
—

What are we counting?

• not counting the fastpath: queued_spin_lock() … queued_spin_unlock()
• count the slowpath: queued_spin_lock_slowpath() …

queued_spin_unlock()

Use a bitmap to be able to tell the two calls to queued_spin_unlock() apart.

Note that spinlocks can be arbitrarily nested, in each of the four contexts
(thread, softirq, interrupt, NMI)

16 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

Show me the code
—

V2:

• https://github.com/terminus/linux/tree/alternatives-v2

V1:

• https://github.com/terminus/linux/tree/alternatives-rfc-upstream-v1

• https://lore.kernel.org/lkml/20200408050323.4237-1-
ankur.a.arora@oracle.com/

17 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

Questions?
—

Or send them to ankur.a.arora@oracle.com.

18 / 18 | Copyright © 2020 Oracle and/or its affiliates | Oracle Public | October 16, 2020

	Contents
	Motivation

