
Device Keepalive State

For Local Live Migration and VMM Fast Restart

Jason Zeng jason.zeng@intel.com

Oct. 30 2020

mailto:jason.zeng@intel.com

Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to
change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by
visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© Intel Corporation

Agenda

• Recap of Problem

• Overview

• Keep Alive States

• VFIO Device Ownership

• Kexec-Reboot & PCI Enumeration

• Open, Status & Future Plan

Recap of Problem

• CSP’s painpoint of system update
– CSP promises high uptime SLA to customers
– Frequent urgent security updates, while system update usually takes long time
– CSP sees more service downtime to customers

• Solution approaches
– Move VM away

• Live migration

– Keep VM at local
• Kernel Live Patching
• Update components separately or in a whole (Qemu, KVM, Kernel)

• Allow pausing VM

• Don’t allow VM pausing
• Don’t allow host reboot

• Don’t allow pausing VM
• Allow host reboot

Allow pausing VM or not? Allow host reboot or not?

- Need to pass device state to new kernel
- Can leverage kexec-reboot
- A time window during which device has no owner

- Device needs to be keepalive

- Needs to pass device state to resumed VM
- Needs to pass guest memory mapping to resumed Qemu

- Passthrough device can be suspended in VM
- host reboot naturally
- Optimization: put guest RAM in persistent memory to

boost performance

Solution Spectrum & Where is VMM Fast Restart

VMM Fast Restart
wants to solve this

category

Overview

• Device Keepalive State

• Two Incremental Stages

• Example Commands

• What to Preserve, What to Re-create

Device Keepalive State

• Device hardware is still alive (no owner)
– May continue to perform DMA
– May continue to issue interrupts to host

• Host software
– Must not modify the underlying hardware state
– Must not bind the device to any other drivers

• Device software state (created & managed by drivers)
– Saved at one of two stages

• Enters keepalive state, or host reboot time

– When re-created, underlying hardware state is re-attached to this software state

struct device {
struct kobject kobj;
struct device *parent;
......
bool keepalive:1;

};

Two Incremental Stages

• Stage-1 Keepalive States
– Related to Qemu runtime operations

• Stage-2 Keepalive States
– Related to Kernel configuration

• Stage-1 keepalive states alone can be used
for implementing Qemu Live Update
– An alternative solution to file descriptor passing

over exec(3)
– Also applicable for local live migration

Qemu Fast Restart

Full VMM Fast Restart

Stage-1

Stage-2

- Save stage-2 keepalive states
- Copy keepalive states to

persistent memory

- Save stage-2 keepalive states
- Copy keepalive states to

persistent memory

Save
Stage-1

keepalive states

Restore
Stage-1

keepalive states

Kexec-Reboot

Example Commands for VMM Fast Restart
qemu-system-x86_64 \

--enable-kvm -M q35 -m 4G -smp 1 -hda ubuntu-1904.qcow2 -monitor stdio \
-object memory-backend-file,id=dimm0,size=4g,mem-path=/dev/dax0.0,share=on,pmem=on,align=2M \
-numa node,memdev=dimm0,cpus=0 \
-device vfio-pci,host=81:00.0 \

QEMU 4.1.92 monitor - type 'help' for more information
(qemu) migrate_set_capability x-ignore-shared on
(qemu) stop
(qemu) set-keepalive on,token=619cdf24-226f-4418-9f5a-98346019860e
(qemu) savevm s0
(qemu) q

qemu-system-x86_64 \
--enable-kvm -M q35 -m 4G -smp 1 -hda ubuntu-1904.qcow2 -monitor stdio \
-object memory-backend-file,id=dimm0,size=4g,mem-path=/dev/dax0.0,share=on,pmem=on,align=2M \
-numa node,memdev=dimm0,cpus=0 \
-device vfio-pci,host=81:00.0,keepalive_token=619cdf24-226f-4418-9f5a-98346019860e \
-S

QEMU 4.1.92 monitor - type 'help' for more information
(qemu) migrate_set_capability x-ignore-shared on
(qemu) loadvm s0
(qemu) set-keepalive off
(qemu) c

What to Preserve, What to Re-create

• Rationale
– Hardware dependent or not

– Try to be less intrusive to other
components

– Stage-1 or Stage-2?
• Qemu runtime operation related?

• Kernel configuration related?

vfio_device

vfio_container

vfio_group

vfio_iommu

vfio_domain

eventfd

IRTE

DMA
page table

pci_dev device

vfio_pci_deviceKVM
irqfd

fd
/dev/vfio/vfio/dev/vfio/<group>Get device fd from groupeventfd

iommu_group

vfio_group

iommu_domain

fd fd fd

irq_desc/irq_data

VCPU

IOMMU state

Stage-1

Stage-2

Recreate

pi_desc

Keep Alive States

• Keep IRQ Alive

– Preserve/Restore pi_desc

– Preserve/Restore IRTE

• Keep DMA Alive

Keep IRQ Alive

• Challenges
– Hardware not available to response

• CPU is rebooting

– Software not available to handle irq

• 2 Options
– Mask IRQ before restart

• Some devices don’t support MSI masking

– Leverage Posted Interrupt (chosen here)
• Not depend on MSI/MSIX

• At least three items need to be preserved
– Posted Interrupt Descriptor (pi_desc, PID)

– IRTE
– Device interrupt vector usage

• Managed by Qemu (not shown in picture)

vfio_deviceeventfd

IRTE

pci_dev device

vfio_pci_deviceKVM
irqfd

fd

Get device fd from groupeventfd
fd

irq_desc/irq_data

VCPU

Stage-1

Stage-2

Recreate

pi_desc

Preserve/Restore pi_desc

vfio_pci_irq_ctx {
......
irq_bypass_producer

}

VFIO

kvm_kernel_irqfd {
......
irq_bypass_consumer

}

KVM

producerconsumer
EventFD

• 2 options
– Introduce ioctl commands for KVM

• UAPI change

– Leverage irq_bypass mechanism (Chosen here)
• Kernel internal API change

• Introduce irq_bypass_consumer{} callbacks:
– save_consumer()
– Restore_consumer()

• Introduce arch specific APIs:
– kvm_arch_irq_bypass_save_consumer()
– Kvm_arch_irq_bypass_restore_consumer()

• Introduce kvm_x86_ops{} callback
– kvm_x86_ops.do_keepalive_pi()

VFIO IRQ keepalive API

Device enters
Keepalive state

consumer->save_consumer()

Arch specific API

kvm_x86_ops.do_keepalive_pi()

vmx_do_keepalive_pi()

save pi_desc, set pi_desc.SN=1

• 2 options
– Awareness at irq_remapping driver (Chosen here)

• Need to avoid HW clobber at PCI/MSI core

– Awareness at PCI/IRQ/MSI core
• Need introduce new API
• Intrusive code change to PCI/IRQ core

• IRQ remapping driver
– Save/restore IRTE
– Record mapping between IRTE and <bdf, vector index>

• PCI/MSI core
– Don’t write MSI/MSIX registers in PCI MSI/MSIX code

path if device is keepalive

Preserve/Restore IRTE

Intel_irq_remapping_free

Save keepalive IRTE info

If device is keepalive

Close VFIO device fd

pci_free_irq_vectors

VFIO

PCI/IRQ/MSI
Framework

Intel_irq_remapping_alloc

Find keepalive IRTE

Reattach keepalive IRTE

If device is keepalive

Qemu VFIO snapshot loading

pci_alloc_irq_vectors

VFIO

PCI/IRQ/MSI
Framework

Save Restore

Keep DMA Alive
• What need to preserve?

– DMA page table, VM Domain id, Pasid (not
covered), IOMMU configuration, etc.

• Preserve iommu_domain or not?
– Preserve: most code change in VFIO (chosen

here)

– Not Preserve: much code change in IOMMU

• Open: vDPA support?

vfio_device

vfio_container

vfio_group

vfio_iommu

vfio_domain

DMA
page table

pci_dev device

vfio_pci_device

/dev/vfio/vfio/dev/vfio/<group>Get device fd from group

iommu_group

vfio_group

iommu_domain

fd fd fd

IOMMU state

Stage-1

Stage-2

Recreate

VFIO Device Ownership

• No owner when device is in keepalive state

• /sys interface to allow admin to grant cap to user/process

• Need an authentication mechanism to verify ownership
– Only previous owner has the permission to inherit the device

• Introduce a uuid token
– Set the token to the VFIO device when keepalive operation starts
– Validate when VM resumes and opens the vfio device

......

(qemu) set-keepalive on,token=619cdf24-226f-4418-9f5a-98346019860e

......

qemu-system-x86_64 \
......
-device vfio-pci,host=81:00.0,keepalive_token=619cdf24-226f-4418-9f5a-98346019860e \
......

vfio_device_get_from_name()

81:00.0 keepalive_token=xxxx

vfio_group_get_device_fd()

VFIO

VFIO_GROUP_GET_DEVICE_FD

VFIO_PCI

vfio_pci_match(device, buf)

vfio_device->ops->match()

Kexec-Reboot

• Introduce keepalive callback notifier for kexec-reboot
– Save Stage-2 keepalive states

• PCI core, IOMMU etc. keepalive states

– Save passthrough device list
– Copy keepalive states to persistent memory

• Restore keepalive state after kexec-Reboot
– Restore IOMMU state early
– Customize PCI enumeration process to restore PCI device state

• Need a memory handover mechanism cross kexec-Reboot
– https://lore.kernel.org/lkml/1588812129-8596-1-git-send-email-anthony.yznaga@oracle.com/

https://lore.kernel.org/lkml/1588812129-8596-1-git-send-email-anthony.yznaga@oracle.com/

PCI Enumeration

• Special handling at scan phase if device is passthrough
– Don’t write HW registers
– Restore state from data passed from old kernel
– Skip firmware loading

• Resource Assignment
– Restore BAR resource assignment from HW

• Allocated by old kernel, should have no conflict (fail if conflict)

Opens

• We avoid writing MSI/MSIX registers of keepalive device on IRQ
teardown and setup code path
– Do we need to check keepalive flag in all other PCI code path? How

intrusive to PCI core?

• What about PCI enumeration failure after kexec-reboot?
– How to notify Qemu about PCI resource conflict?

Opens – Cont’d

• Port service drivers of switch/root port
– Propagate keepalive flag to switch/root port?
– AER, BW_notification, DPC, PCIeHP, etc. capabilities
– Most of them register IRQs, how to handle these IRQs?

• Disable & read back status registers after kexec-reboot?

• SRIOV/SIOV support
– PF device state also need to be preserved

• Propagate keepalive flag to PF?
• PF vendor driver also need to change?

– PCI enumeration handling
• Avoid destroy VF configuration

Status & Future Plan

• POC of Qemu Fast Restart & full VMM Fast Restart - done
– Haswell/Broadwell platform, Intel x540 NIC
– Workloads can be restored after full VMM fast restart

• Youtube video streaming workloads
• SCP workloads

• Github repo:
– https://github.com/intel/vmm-fast-restart-linux
– https://github.com/intel/vmm-fast-restart-qemu

• Future plan: Upstreaming
– POC proved feasible, but challenging for upstreaming

• Welcome comments, suggestions, and cooperation !

https://github.com/intel/vmm-fast-restart-linux
https://github.com/intel/vmm-fast-restart-qemu

Question?

Backup

msix_table_mmio_write

vfio_msix_vector_do_use

vfio_add_kvm_msi_virq

vfio_enable_vectors

kvm_irqchip_assign_irqfd
KVM_IRQFD

VFIO_DEVICE_SET_IRQS

Start from guest writing MSIX registers

kvm_irqfd_assign

vfio_pci_set_irqs_ioctl

pci_alloc_irq_vectors

request_irq

irq_bypass_register_consumer

irq_bypass_register_producer

IRQ/MSI
Framework Intel_irq_remapping_alloc

alloc_irte

Keep IRQ Alive
Normal VFIO Flow for IRQ Configuration

VFIO snapshot loading

vfio_msix_vector_do_use

vfio_add_kvm_msi_virq

vfio_enable_vectors

kvm_irqchip_assign_irqfd
KVM_IRQFD

VFIO_DEVICE_SET_IRQS

Start from VFIO Snapshot Loading

vfio_pci_set_irqs_ioctl

pci_alloc_irq_vectors

request_irq

irq_bypass_register_producer

IRQ/MSI
Framework Intel_irq_remapping_alloc

Find keepalive IRTE

msix_load

Re-attach keepalive IRTE

If device is keepalive

kvm_irqfd_assign

irq_bypass_register_consumer

Keep IRQ Alive
Keepalive VFIO Flow for IRQ Configuration and IRTE Restoration

Keep DMA Alive
Normal VFIO Flow for IOMMU Domain Configuration

vfio_realize

Open group fd

Open container fd

Group set container

Container set IOMMU

Attach group to IOMMU domain

Bus allocate IOMMU domain

Call into IOMMU driver to attach device to IOMMU domain

iommu_ops->attach_dev()

vfio_realize

Open group fd

Open container fd

Group set container

Container set IOMMU

Attach group to IOMMU domain

If all devices in the iommu group are keepalive

Find & reconnect existing IOMMU domain that saved aside

Keep DMA Alive
Keepalive VFIO Flow for IOMMU Domain Configuration

Address space update

vfio_listener_region_add

vfio_dma_map
VFIO_IOMMU_MAP_DMA

Start from VM Address Space Update

vfio_iommu_type1_map_dma

vfio_dma_do_map

vfio_link_dma

vfio_pin_pages_remote

iommu_map

iommu_ops->map intel_iommu_map

Set up page table entry

Save a copy of
DMA mapping

in VFIO

Keep DMA Alive
Normal VFIO Flow for DMA Mapping

Address space update

vfio_listener_region_add

vfio_dma_map
VFIO_IOMMU_MAP_DMA

Start from VM Address Space Update

vfio_iommu_type1_map_dma

vfio_dma_do_map

vfio_link_dma

vfio_pin_pages_remote

iommu_map

iommu_ops->map intel_iommu_map

Set up page table entry

Save a copy of
DMA mapping

in VFIO

Clear keepalive flag VFIO validate DMA mappings

VM resume complete

Compare saved DMA mappings with IOMMU page table

VFIO_SET_KEEPALIVE

Keep DMA Alive
Keepalive VFIO Flow for DMA Mapping

