
KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation

Managing Matryoshkas:
Testing Nested Guests
—
Marc Hartmayer
<mhartmay@de.ibm.com>

Managing Matryoshkas:
Testing Nested Guests
—
Marc Hartmayer
<mhartmay@de.ibm.com>

Trademarks & Disclaimer
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks,
see www.ibm.com/legal/copytrade.shtml:

IBM, the IBM logo, IBM Z, IBM z Systems, IBM z15, IBM z14, WebSphere, DB2 and Tivoli are trademarks of IBM Corporation in the United States and/or other
countries. For a list of additional IBM trademarks, please see https://ibm.com/legal/copytrade.shtml.

The following are trademarks or registered trademarks of other companies: Java and all Java based trademarks and logos are trademarks of Sun Microsystems, Inc., in
the United States and other countries or both Microsoft, Windows,Windows NT and the Windows logo are registered trademarks of Microsoft Corporation in the United
States, other countries, or both. Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and
Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries or both. Linux is a trademark of Linus Torvalds in the United States, other
countries, or both. Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc. InfiniBand is a trademark of the InfiniBand Trade Association.
Other company, product, or service names may be trademarks or service marks of others.

NOTES: Linux penguin image courtesy of Larry Ewing (lewing@isc.tamu.edu) and The GIMP

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many
factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on
development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Users of this document should verify the
applicable data for their specific environment. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty
terms apply.
Information is provided “AS IS” without warranty of any kind. All customer examples cited or described in this presentation are presented as illustrations of the manner
in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary
depending on individual customer configurations and conditions.

Trademarks & Disclaimer #2
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the
information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and
cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Prices are suggested US list prices and are subject to change without notice. Starting price may not include a hard drive, operating system or other features. Contact
your IBM representative or Business Partner for the most current pricing in your geography. Any proposed use of claims in this presentation outside of the United States
must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any

Notice Regarding Specialty Engines

Any information contained in this document regarding Specialty Engines (“SEs”) and SE eligible workloads provides only general descriptions of the types and portions
of workloads that are eligible for execution on Specialty Engines (e.g., zIIPs, zAAPs, and IFLs). IBM authorizes customers to use IBM SE only to execute the processing
of Eligible Workloads of specific Programs expressly authorized by IBM as specified in the “Authorized Use Table for IBM Machines” provided at
www.ibm.com/systems/support/machine_warranties/machine_code/aut.html (“AUT”).
No other workload processing is authorized for execution on an SE.
IBM offers SEs at a lower price than General Processors/Central Processors because customers are authorized to use SEs only to process certain types and/or amounts
of workloads as specified by IBM in the AUT.

http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html

Agenda

What is Nested Virtualization?
Testing Nested Virtualization
Demo
New Approach
 Design Goals, Ideas, and Details
What’s next?

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 4

Nested Virtualization

● Turn guest into host

● Use cases:
– Development/Testing
– Production
– Training

● Terminology:
– “L0” - bare metal host, running KVM
– “L1” - VM running on “L0”, acting as

hypervisor
– “L2” - VM running on “L1” - called nested

guest
– And so on...

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 5

Source:
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20Dav
id%20Hildenbrand_0.pdf

http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20David%20Hildenbrand_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20David%20Hildenbrand_0.pdf

Nested Virtualization on
s390x

● Requirements:
– Kernel >= 4.8
– kvm.nested=1
– QEMU >= 2.9
– CPU host model

● Multi-level nesting support

● Hardware assisted via SIE (Start Interpretive
Execution)

● Migration works between different levels

● Supports migration of L1 guest with L2 guest
running¹

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 6

[1] See https://www.linux-kvm.org/page/Nested_Guests

Source:
https://mp.s81c.com/pwb-production/4a422bbd1af7c77c051f5edcfc9adc9f/additionalOfferingImg__1_5ba95
6f1-33db-4219-9496-3f4347e4ed27_859e77ce-b463-4f06-a27a-5a5bc70e23b8.jpg
Source:
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20Dav
id%20Hildenbrand_0.pdf

PR/SM™ - LPAR

KVM KVM

KVM

https://www.linux-kvm.org/page/Nested_Guests
https://mp.s81c.com/pwb-production/4a422bbd1af7c77c051f5edcfc9adc9f/additionalOfferingImg__1_5ba956f1-33db-4219-9496-3f4347e4ed27_859e77ce-b463-4f06-a27a-5a5bc70e23b8.jpg
https://mp.s81c.com/pwb-production/4a422bbd1af7c77c051f5edcfc9adc9f/additionalOfferingImg__1_5ba956f1-33db-4219-9496-3f4347e4ed27_859e77ce-b463-4f06-a27a-5a5bc70e23b8.jpg
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20David%20Hildenbrand_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20David%20Hildenbrand_0.pdf

Testing nested
virtualization

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 7

Available Test Suites/Frameworks
for QEMU/KVM (and libvirt)

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 8

– Avocado-VT: tp-libvirt, tp-qemu

– Avocado_qemu

– kvm-unit-tests

– Libvirt TCK

– Linux Virtualization Tests (virt-test) (legacy only)

– Supernested

→ Avocado-VT seems to be the most evolved framework

Shortcomings for nested
virtualization tests

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 9

Source: Presentation “The functional test beast: tame it, bring it home and make it your
pet” (https://events19.linuxfoundation.org/wp-content/uploads/2017/12/The-
Functional-Test-Beast-Tame-it-Bring-it-Home-and-Make-it-your-Pet-Cleber-Rosa-Red-
Hat-Inc..pdf)

Shortcomings of Avocado-VT for nested
virtualization testing:

– Interaction with host using Python
– Interaction with the guests is done via SSH using

bash
Why?

Wouldn’t it be great if we can simply reuse our
host code in the nested guest, the new “host”?

Shortcomings for nested
virtualization tests

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 10

– Debugging of nested guest code is hard
– Common tasks, e.g. hot (un)plugging a device

● Workarounds are often used:
– Sleeps
– Busy loops for polling
– Coarse-grained “udevadm settle”

Wouldn’t it be great to use pyudev¹ everywhere?
– Different semantics

● e.g. Popen(…) vs. session.cmd()
Wouldn’t it be great to have the exact same semantic in the guest as in the host?

– Error handling? Stack traces?

[1] See https://pyudev.readthedocs.io

https://pyudev.readthedocs.io/

Use your host
code in the
guest

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 11

Example Test Case

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 12

class ExampleTestCase(SshTestCase):

 DOMAIN_NAMES = ['test1']

 def runTest(self):

 guest = self.guests['test1']

 stdout = guest.call(subprocess.check_output, ['hostname']).decode()

 self.assertEqual(stdout, 'qemus390x\n')

 self.assertEqual(guest.call(socket.gethostname), stdout.strip())

DEMO TIME

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 13

Current state…
Prototype only.

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 14

Usage of Mitogen¹

“[…] make it childsplay to run Python code on
remote machines [...]” - David Wilson²

● Python library for writing distributed self-
replicating programs

● Support for Python2 >= 2.4 and Python3.x

● Python interpreter and SSH client must be
installed
– Zero Python dependencies

(uses only Python standard library)

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 15

Source: https://sweetness.hmmz.org/images/mito1/mitogen.svg
[1] https://github.com/dw/mitogen created by David Wilson
[2] https://sweetness.hmmz.org/page/7/ [visited 23.10.2019]

https://github.com/dw/mitogen
https://sweetness.hmmz.org/page/7/

Mitogen Overview

● Bootstrap: Spins up and hooks up a "remote" Python,
e.g. via SSH → This forms a new context
– Function calls in this context:

Uses pickle¹ for marshalling

● Resolves Python dependencies in the remote context
transparently²

● Has concept of services³ with a state
– User-supplied class with explicitly exposed

methods, which can be called by other contexts

● Forwards Stdio and logs (logging package)
● Supports asynchronous calls

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 16

"""Get number of logical CPUs on host_2 using host_1 as an SSH
hop.

Usage: $ python3 count.py host_1 host_2"""

import sys

import mitogen

import psutil

@mitogen.main()

def main(router):

 host_1_ctxt = router.ssh(hostname=sys.argv[1])

 host_2_ctxt = router.ssh(via=host_1_ctxt,
hostname=sys.argv[2])

 print(host_2_ctxt.call(psutil.cpu_count, logical=True))[1] See https://docs.python.org/3/library/pickle.html for details
[2] See https://mitogen.networkgenomics.com/#module-forwarder for details.
[3] See https://mitogen.networkgenomics.com/services.html for details.

https://docs.python.org/3/library/pickle.html
https://mitogen.networkgenomics.com/#module-forwarder
https://mitogen.networkgenomics.com/services.html

def lookup(name):

 import libvirt

 conn = libvirt.open()

 dom = conn.lookupByName(name)

 return dom

dom = guest_1.call(lookup, "demo")

dom.create()

Mitogen is not enough...

1) Handle (un)pickling

2) Mutable state in remote context(s),
e.g. even placed in a native library (libvirt-
python)

3) Lifetime of the objects in the remote context(s)

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 17

Remote
invocation via
proxy objects

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 18

def lookup(name):

 global dom

 import libvirt

 conn = libvirt.open()

 dom = conn.lookupByName(name)

 return dom

dom_proxy = guest_1.call(lookup, "demo")

assert isinstance(dom_proxy, ProxyObj)

dom_proxy.create()

will raise an "mitogen.core.CallError:

builtins.TypeError: can't pickle PyCapsule objects"

as a libvirt.virDomain object is not pickleable

dom = dom_proxy.__value__(trust=True)

Solution for pickling and state
problem

● Contexts return proxy objects and methods for
everything
– Can be used as argument in function calls

● Register trusted classes to the (un)pickler

● Special “dunder method” __value__ for
receiving the actual object

– Enforce the unpickling of non-registered
classes by using trust keyword

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 19

[1] See https://docs.python.org/3/library/stdtypes.html
[2] See https://docs.python.org/3/reference/datamodel.html

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/reference/datamodel.html

Connect
Python Object
life cycles

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 20

Solution for lifetime problem

● Connect life cycle of proxy objects and the actual
objects.
– As long as a proxy object is alive the referred

object must not be garbage collected
– “Transitive proxy object chains”

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 21

Conclusions

Advantages

● Guests can run Python host code transparently
– Less duplicated code

● Usage of Python packages like pyudev in the
guests

● Redirection of Stdio/logging in the guests

● Usage of shell commands can be minimized to a
minimum

Limitations

● Native dependencies are not copied
automatically, e.g. libvirt.so

● Python interpreter must be available in the guest
and there is an overhead caused by the Python
interpreter start

● Pickling limitations
– use other pickle module, e.g. dill¹

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 22

[1] See https://docs.python.org/3/library/pickle.html for details.

https://docs.python.org/3/library/pickle.html

Summary

● There is still much to do :/

● Test approaches for nested virtualization already
exists, but...

● This new approach:
– Allows the interaction with the host and

guests using Python
– Recursive reuse of host code in guests
– Easy management of (nested) guests

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 23

What’s next?

● Finish our implementation

● Upstreaming changes to Mitogen

● Make it easier to debug:
– Implement remote Python Debugger (“remote

PDB”)?

● Integrate our framework/tests into Avocado-VT?

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 24

Thank you.

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 25

