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Nested Virtualization

● Turn guest into host

● Use cases:
– Development/Testing
– Production
– Training

● Terminology:
– “L0” - bare metal host, running KVM
– “L1” - VM running on “L0”, acting as 

hypervisor
– “L2” - VM running on “L1” - called nested 

guest
– And so on...
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Source:
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20Dav
id%20Hildenbrand_0.pdf

http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20David%20Hildenbrand_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20David%20Hildenbrand_0.pdf


Nested Virtualization on 
s390x

● Requirements:
– Kernel >= 4.8
– kvm.nested=1
– QEMU >= 2.9
– CPU host model

● Multi-level nesting support

● Hardware assisted via SIE (Start Interpretive 
Execution)

● Migration works between different levels

● Supports migration of L1 guest with L2 guest 
running¹
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[1] See https://www.linux-kvm.org/page/Nested_Guests

Source: 
https://mp.s81c.com/pwb-production/4a422bbd1af7c77c051f5edcfc9adc9f/additionalOfferingImg__1_5ba95
6f1-33db-4219-9496-3f4347e4ed27_859e77ce-b463-4f06-a27a-5a5bc70e23b8.jpg
Source: 
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20Dav
id%20Hildenbrand_0.pdf
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http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20David%20Hildenbrand_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Nesting%20KVM%20on%20s390x%20-%20David%20Hildenbrand_0.pdf


Testing nested 
virtualization
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Available Test Suites/Frameworks
for QEMU/KVM (and libvirt)
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– Avocado-VT: tp-libvirt, tp-qemu

– Avocado_qemu

– kvm-unit-tests

– Libvirt TCK

– Linux Virtualization Tests (virt-test) (legacy only)

– Supernested

→ Avocado-VT seems to be the most evolved framework



Shortcomings for nested 
virtualization tests
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Source: Presentation “The functional test beast: tame it, bring it home and make it your 
pet” (https://events19.linuxfoundation.org/wp-content/uploads/2017/12/The-
Functional-Test-Beast-Tame-it-Bring-it-Home-and-Make-it-your-Pet-Cleber-Rosa-Red-
Hat-Inc..pdf)

Shortcomings of Avocado-VT for nested 
virtualization testing:

– Interaction with host using Python
– Interaction with the guests is done via SSH using 

bash
Why?

Wouldn’t it be great if we can simply reuse our 
host code in the nested guest, the new “host”?



Shortcomings for nested 
virtualization tests
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– Debugging of nested guest code is hard
– Common tasks, e.g. hot (un)plugging a device

● Workarounds are often used:
–  Sleeps
–  Busy loops for polling
–  Coarse-grained “udevadm settle” 

Wouldn’t it be great to use pyudev¹ everywhere?
– Different semantics

● e.g. Popen(…) vs. session.cmd()
Wouldn’t it be great to have the exact same semantic in the guest as in the host?

– Error handling? Stack traces?

[1] See https://pyudev.readthedocs.io

https://pyudev.readthedocs.io/


Use your host 
code in the 
guest
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Example Test Case
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class ExampleTestCase(SshTestCase):                                                                                                

    DOMAIN_NAMES = ['test1']                                                                                                       

                                                                                                                                   

    def runTest(self):                                                                                                             

        guest = self.guests['test1']                                                                                               

        stdout = guest.call(subprocess.check_output, ['hostname']).decode()                                                        

        self.assertEqual(stdout, 'qemus390x\n')                                                                                    

        self.assertEqual(guest.call(socket.gethostname), stdout.strip())



DEMO TIME
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Current state…
Prototype only.
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Usage of Mitogen¹

“[…] make it childsplay to run Python code on 
remote machines [...]” - David Wilson²

● Python library for writing distributed self-
replicating programs

● Support for Python2 >= 2.4 and Python3.x

● Python interpreter and SSH client must be 
installed
– Zero Python dependencies 

(uses only Python standard library)
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Source: https://sweetness.hmmz.org/images/mito1/mitogen.svg
[1] https://github.com/dw/mitogen created by David Wilson
[2] https://sweetness.hmmz.org/page/7/ [visited 23.10.2019]

https://github.com/dw/mitogen
https://sweetness.hmmz.org/page/7/


Mitogen Overview

● Bootstrap: Spins up and hooks up a "remote" Python, 
e.g. via SSH → This forms a new context 
– Function calls in this context: 

Uses pickle¹ for marshalling

● Resolves Python dependencies in the remote context 
transparently²

● Has concept of services³ with a state 
– User-supplied class with explicitly exposed 

methods, which can be called by other contexts

● Forwards Stdio and logs (logging package)
● Supports asynchronous calls
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"""Get number of logical CPUs on host_2 using host_1 as an SSH 
hop.

Usage: $ python3 count.py host_1 host_2"""

import sys

import mitogen

import psutil

@mitogen.main()

def main(router):

    host_1_ctxt = router.ssh(hostname=sys.argv[1])

    host_2_ctxt = router.ssh(via=host_1_ctxt, 
hostname=sys.argv[2])

    print(host_2_ctxt.call(psutil.cpu_count, logical=True))[1] See https://docs.python.org/3/library/pickle.html for details
[2] See https://mitogen.networkgenomics.com/#module-forwarder for details.
[3] See https://mitogen.networkgenomics.com/services.html for details.

https://docs.python.org/3/library/pickle.html
https://mitogen.networkgenomics.com/#module-forwarder
https://mitogen.networkgenomics.com/services.html


def lookup(name):

    import libvirt

    conn = libvirt.open()

    dom = conn.lookupByName(name)

    return dom

dom = guest_1.call(lookup, "demo")

dom.create()

Mitogen is not enough...

1) Handle (un)pickling

2) Mutable state in remote context(s), 
e.g. even placed in a native library (libvirt-
python)

3) Lifetime of the objects in the remote context(s)
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Remote 
invocation via 
proxy objects
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def lookup(name):

    global dom

    import libvirt

    conn = libvirt.open()

    dom = conn.lookupByName(name)

    return dom

dom_proxy = guest_1.call(lookup, "demo")

assert isinstance(dom_proxy, ProxyObj)

dom_proxy.create()

# will raise an "mitogen.core.CallError: 

# builtins.TypeError: can't pickle PyCapsule objects"

# as a libvirt.virDomain object is not pickleable

dom = dom_proxy.__value__(trust=True)

Solution for pickling and state 
problem

● Contexts return proxy objects and methods for 
everything
– Can be used as argument in function calls

● Register trusted classes to the (un)pickler

● Special “dunder method” __value__ for 
receiving the actual object

– Enforce the unpickling of non-registered 
classes by using trust keyword
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[1] See https://docs.python.org/3/library/stdtypes.html
[2] See https://docs.python.org/3/reference/datamodel.html

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/reference/datamodel.html


Connect 
Python Object 
life cycles
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Solution for lifetime problem

● Connect life cycle of proxy objects and the actual 
objects.
– As long as a proxy object is alive the referred 

object must not be garbage collected
– “Transitive proxy object chains”
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Conclusions

Advantages

● Guests can run Python host code transparently
– Less duplicated code

● Usage of Python packages like pyudev in the 
guests

● Redirection of Stdio/logging in the guests

● Usage of shell commands can be minimized to a 
minimum

Limitations

● Native dependencies are not copied 
automatically, e.g. libvirt.so

● Python interpreter must be available in the guest 
and there is an overhead caused by the Python 
interpreter start

● Pickling limitations
– use other pickle module, e.g. dill¹
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[1] See https://docs.python.org/3/library/pickle.html for details.

https://docs.python.org/3/library/pickle.html


Summary

● There is still much to do :/

● Test approaches for nested virtualization already 
exists, but...

● This new approach:
– Allows the interaction with the host and 

guests using Python
– Recursive reuse of host code in guests
– Easy management of (nested) guests

KVM Forum 2019 / October 31, 2019 / © 2019 IBM Corporation 23



What’s next?

● Finish our implementation

● Upstreaming changes to Mitogen

● Make it easier to debug:
– Implement remote Python Debugger (“remote 

PDB”)?

● Integrate our framework/tests into Avocado-VT?
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Thank you.
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