
Thanos Makatos / thanos@nutanix.com
Swapnil Ingle / swapnil.ingle@nutanix.com

Forward-Looking Statement Disclaimer
This presentation and the accompanying oral commentary may include express and implied forward-looking statements, including but not limited to statements concerning our business plans
and objectives, our financial model targets, new products, services, product features and technology that are under development or in process and the capabilities of such new products,
services, product features and technology, our plans to introduce new products, services or product features in the future, the implementation of our products on additional hardware platforms,
the integration of newly acquired technology and products, strategic partnerships that are in process, product performance, competitive position, industry environment, and potential market
opportunities. These forward-looking statements are not historical facts, and instead are based on our current expectations, estimates, opinions and beliefs. The accuracy of such forward-
looking statements depends upon future events, and involves risks, uncertainties and other factors beyond our control that may cause these statements to be inaccurate and cause our actual
results, performance or achievements to differ materially and adversely from those anticipated or implied by such statements, including, among others: failure to develop, or unexpected
difficulties or delays in developing, new products, services, product features or technology on a timely or cost-effective basis; delays in or lack of customer or market acceptance of our new
products, services, product features or technology; the failure of our software to interoperate on different hardware platforms; our ability to successfully integrate newly acquired technology
and products; the failure to form, or delays in the formation of, new strategic partnerships and the possibility that we may not receive anticipated results from forming such strategic
partnerships; the introduction, or acceleration of adoption of, competing solutions, including public cloud infrastructure; a shift in industry or competitive dynamics or customer demand; and
other risks detailed in our Quarterly Report on Form 10-Q for the fiscal quarter ended January 31, 2019, filed with the SEC, filed with the Securities and Exchange Commission. These forward-
looking statements speak only as of the date of this presentation and, except as required by law, we assume no obligation to update forward-looking statements to reflect actual results or
subsequent events or circumstances. Any future product or roadmap information is intended to outline general product directions, and is not a commitment, promise or legal obligation for
Nutanix to deliver any material, code, or functionality. This information should not be used when making a purchasing decision. Further, note that Nutanix has made no determination as to if
separate fees will be charged for any future product enhancements or functionality which may ultimately be made available. Nutanix may, in its own discretion, choose to charge separate fees
for the delivery of any product enhancements or functionality which are ultimately made available. Certain information contained in this presentation and the accompanying oral commentary
may relate to or be based on studies, publications, surveys and other data obtained from third-party sources and our own internal estimates and research. While we believe these third-party
studies, publications, surveys and other data are reliable as of the date of this presentation, they have not independently verified, and we make no representation as to the adequacy, fairness,
accuracy, or completeness of any information obtained from third-party sources.

Trademark Disclaimer
© 2019 Nutanix, Inc. All rights reserved. Nutanix, the Nutanix logo and any other Nutanix products and features mentioned herein are registered trademarks or trademarks of Nutanix, Inc. in the
United States and other countries. All other brand names and logos mentioned herein are for identification purposes only and are the property of their respective holder(s), Nutanix may not
associated with, or sponsored or endorsed by such holder(s).

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 2

• QEMU: de facto device emulation

• Performance/efficiency

– Multiple virtual devices cannot be emulated by single process

– Polling virtual drivers prohibitively expensive

• Must use vhost-user

– Datapath offloading protocol designed around VirtIO

– Not clean for non-VirtIO devices

• Monolithic emulation

– Single point of failure

– Harder to upgrade

• VFIO/mdev→ requires kernel vendor driver

• Is there a better way?

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 3

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 4

MUSER

restartable device
virtualization
(easier upgrade,
fault tolerance)

QEMU
requires Vhost/VirtIO
for offloading

device
virtualization
in user space

VFIO/mdev

single context
emulates
multiple devices

device virtualization
in kernel space

physical device
managed by
single context

• VFIO (Virtual Function I/O)

– Allows secure direct device access to user space

– Physical device can be passed through to VM in QEMU

• VFIO Mediates Devices (mdev)

– Virtualizes devices that don’t support SR-IOV

– Partitions of single device passed through to multiple VMs

▪ Simultaneously

▪ Securely

– Kernel vendor driver partitions and mediates

• MUSER leverages VFIO/mdev

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 5

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 6

VM

QEMU

VM

QEMU

VM

QEMU

VM

QEMU

VFIO/mdev

mdev driver

VM

QEMU

VM

QEMU

VFIO/mdev

muser.ko

libmuser

• Framework for implementing PCI device emulation in user space

– Implemented as a VFIO mediated device (muser.ko)

– Forwards ops to user space (libmuser)

– https://github.com/nutanix/muser

• What does MUSER offer?

– Single process can emulate multiple devices

– Complexity hidden (DMA & mem mgmt, IRQs, PCI config space)

• Device emulation app links with libmuser and specifies:

– Device/vendor ID, PCI regions, #IRQs, PCI caps

– Callbacks for PCI regions/caps/mmap

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 7

https://github.com/nutanix/muser

• muser.ko

– Registers with mdev, provides read/write/mmap callbacks

– Creates char dev for comm. with libmuser

– Forwards callbacks to libmuser via char dev

• device emulation (libmuser)

– Opens char dev

– Sends PCI device configuration

– Waits for commands and executes user –provided callbacks

• muser.ko/libmuser communication

– custom ioctl interface

– libmuser synchronously waits for commands

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 8

QEMU

VFIO
mdev

muser.ko

device
emulation

libmuser

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

• Device needs to DMA data from/to guest mem

– Trivial to do with actual HW

– QEMU registers guest memory to VFIO

• DMA region registration in MUSER

– muser.ko injects guest memory into libmuser app context

– QEMU guest memory must be shared:

-object memory-backend-file,share=yes,…

– libmuser provides functions for translating GPA to current VMA

(pin/unpin in HW terms)

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 10

QEMU

user

kernel

VFIO
mdev

muser.ko

device
emulation

libmuser

1. ioctl(VFIO_IOMMU_MAP_DMA)

2. get_user_pages_fast()
vm_insert_page()

3. notify libmuser

• Optional, useful for high performance

– Sparse maps supported

• QEMU calls mmap to VFIO fd

• muser.ko notifies libmuser

• libmuser calls back to app, app must use lm_mmap()

• lm_mmap() alloces device memory (mmaps into muser.ko)

– Requesting libmuser to mmap() simplifies implementation

– mmap()‘ing device done infrequently

• Device memory lives in muser.ko, not freed if libmuser dies

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 11

QEMU

user

kernel

muser.ko

device
emulation

1. mmap(vfio_dev_fd)

4. alloc_page()
vm_insert_page()

3. mmap(muser_fd)

VFIO
mdev

libmuser

2. app mmap() cb,
app calls lm_mmap()

• QEMU passes IRQ fd to VFIO → muser.ko installs fd into libmuser

• Device emulation can trigger interrupts by calling lm_irq_trigger()

• INTx and MSI/X supported

• muser.ko handles gory details

– VFIO_DEVICE_SET_IRQS

– VFIO_IRQ_SET_XXX

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 12

typedef struct { /* more stuff … */
uint32_t flags;
uint32_t size;
lm_region_access_t *fn;
lm_map_region_t *map; /* optional */

} lm_reg_info_t;

typedef struct {
uint32_t irq_count[LM_DEV_NUM_IRQS];
lm_reg_info_t reg_info[LM_DEV_NUM_REGS];
lm_pci_hdr_id_t id;
lm_pci_hdr_ss_t ss;
lm_pci_hdr_cc_t cc;

} lm_pci_info_t;

typedef struct {
uint8_t id;
size_t size;
lm_cap_access_t *fn;

} lm_cap_t;

typedef struct { /* more stuff … */
lm_pci_info_t pci_info;
int (*reset) (void *pvt); /* optional */
lm_cap_t caps[LM_MAX_CAPS]; /* optional */

} lm_dev_info_t;

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 13

typedef ssize_t (lm_region_access_t) (void *pvt, char *buf,
size_t count, loff_t offset, bool is_write);

typedef unsigned long (lm_map_region_t) (void *pvt,
unsigned long off, unsigned long len);

typedef ssize_t (lm_cap_access_t)(void *pvt, uint8_t id,
char *buf, size_t count, loff_t offset, bool is_write);

lm_ctx_t *lm_ctx_create(lm_dev_info_t *dev_info);

int lm_ctx_drive(lm_ctx_t *ctx);

void lm_ctx_destroy(lm_ctx_t *ctx);

int lm_irq_trigger(lm_ctx_t *ctx, uint32_t subindex);

int lm_addr_to_sg(lm_ctx_t *ctx, dma_addr_t dma_addr,
uint32_t len, dma_sg_t *sg, int max_sg);

int lm_map_sg(lm_ctx_t *ctx, int prot, const dma_sg_t *sg,
struct iovec *iov, int cnt);

void lm_unmap_sg(lm_ctx_t *ctx, dma_sg_t *sg,
struct iovec *iov, int cnt);

• app specifies minimum PCI dev characteristics:
lm_dev_info_t dev_info = {

.pci_info = {
.id = {.vid = 0x8086, .did = 0x1234},
.reg_info[LM_BAR0_REG_IDX] = {

.flags = LM_REG_FLAG_RW,

.size = 0x40,

.fn = &bar0
},
.irq_count[LM_DEV_INTX_IRQ_IDX] = 1

}
}

• app specifies dev behavior by providing region callbacks:

– One callback per region (9 in total, unused left blank)

– VM accessing a particular region (e.g. reading BAR 0) results in
registered callback getting called:
ssize_t bar0(void *pvt, char *buf, size_t count,

loff_t offset, bool is_write) { … return count; }

– MUSER handles standard PCI header (first 64 bytes)

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 14

• Live migration

• Restartable libmuser

• Multithreaded libmuser

• Poll for commands from muser.ko

• libmuser can hide even more PCI complexity

• Language bindings (e.g. Python, JavaScript)

• Provide more examples

• Trap mem writes when mmap is used

M U S E R : M E D I A T E D U S E R S P A C E D E V I C E | K V M F O R U M 2 0 1 9

| 15

Thanos Makatos / thanos@nutanix.com
Swapnil Ingle / swapnil.ingle@nutanix.com

