
1

Reports of my death bloat
have been greatly exaggerated
KVM Forum 2019

Paolo Bonzini, Red Hat
Sr. Principal Software Engineer

2

Or: How I learned to stop worrying
and love QEMU
KVM Forum 2019

Paolo Bonzini, Red Hat
Sr. Principal Software Engineer

3

Why this talk?
● “Why are we investing in QEMU?”
● “I heard that QEMU is not secure”
● “Why do you even need a floppy disk controller?”

4

Is QEMU big?

Yes!

5

How big?
$ git ls-tree -r --full-name HEAD | awk '/.c$/ {print $4}'

● Excluding submodules, C files only:
● ~2800 files, 1.650.000 lines of C code
● Of these, 800 files and 150.000 lines are tests

● Also excluded:
● Header files (~10% of C code)
● Build and test scripts written in other language
● Test data

6

Is QEMU too big?

Maybe!

7

Let’s see...
● Too big for some usecases or in general?
● Why do you care about size?
● Do you know how to measure size?
● Have you measured it?
● Is QEMU’s complexity essential?

8

QEMU can...
● … emulate other processors
● … emulate your processor
● … run old operating systems
● … run foreign Linux binaries
● … use KVM/HAX/HVF/WHPX for CPU virtualization

9

Know your usecase
● … emulate other processors
● … emulate your processor
● … run old operating systems
● … run foreign Linux binaries
● … use KVM/HAX/HVF/WHPX for CPU virtualization

Answer: ./configure --target-list=...

10

Know your usecase
● … emulate other processors
● … emulate your processor
● … run old operating systems
● … run foreign Linux binaries
● … use KVM/HAX/HVF/WHPX for CPU virtualization

Answer: ./configure --disable-tcg

11

Is your QEMU executable too big?

And how does that affect you?

12

Why do you care?
● Attack surface
● Disk/memory footprint
● Startup time
● Number of bugs
● Customer support
● Cost of auditing for security

13

Attack surface
● Guest device drivers
● Management interface (QMP)
● Migration data
● Image formats
● ELF parsing
● VNC server
● Not all code is created equal

14

Vulnerabilities
● Of the top 100 vulnerabilities reported for QEMU:

● 65 were not guest exploitable
● 3 were not in QEMU :)
● 5 did not affect x86 KVM guests
● 3 were not related to the C language
● Only 6 affected devices normally used for IaaS

● The most recent of these 6 was reported in 2016

15

Attack surface
● Have you secured your network?
● What data do your customers provide to you?

● Kernel images
● Disk images
● VM snapshots (migration data)

● Are your guests sandboxed (SELinux, seccomp, …)?
● Is your kernel up-to-date?

16

However!
● Developers want to hear from you!
● Patches are welcome, but suggestions are too!
● What code would you like to configure out?

17

Footprint and startup time
● Measured similarly: RSS, binary size, shared library count
● Let’s look at QEMU RSS:

● moxie, -M none -display none: 21 MiB
● moxie, -M moxiesim -accel qtest -display none: 21 MiB
● x86_64, -S -M none -accel qtest -display none: 27 MiB
● x86_64, -S -M pc -accel qtest -display none: 33 MiB
● x86_64, -S -M pc -accel kvm -display none: 33 MiB
● x86_64, -S -M pc -accel kvm -display gtk: 62 MiB

18

Footprint and startup time
● Always measure it!

● RSS
● Shared libraries
● Time to first non-firmware instruction

● Beware of wrong assumptions
● Text is shared across multiple VMs
● Not all text in a shared library will be in memory
● Firmware runs as fast as hardware (and less security sensitive)

19

Most of the memory footprint is shared
● This QEMU binary (3.1 from Fedora 30) is 12.5 MiB big
● It loads 99 shared libraries, for another 43.5 MiB
● Code that is never used never reaches memory

ldd /usr/bin/qemu-system-x86_64
 | awk 'NF>=3 {print $3}' |sort -u | xargs size
 | awk '{sum += $4} END {print sum}'

20

QEMU is already modular
● QEMU backends can be loaded from .so modules
● These link to 77 more shared libraries (215 MiB more!)

ldd /usr/lib64/qemu/*.so
 | awk 'NF>=3 {print $3}' |sort -u | xargs size
 | awk '{sum += $4} END {print sum}'

21

Dependencies can be configured out

libc.so.6
librt.so.1
libstdc++.so.6
libm.so.6
libgcc_s.so.1
libpthread.so.0
libutil.so.1

libgthread-2.0.so.0
libglib-2.0.so.0
libpcre.so.1
libnettle.so.4
libpixman-1.so.0

● Full (default) build: 176 shared libraries
● Minimal build: 16 libraries, total size 19 MiB, RSS 16 MiB

libseccomp.so.2
libaio.so.1
libnuma.so.1
libz.so.1

22

Bugs, auditing and customer support
● Know your environment!

● Do your customers need SDL/GTK+ backends?
● Do your customers need audio backends?
● Which devices will be configured in your virtual machines?

● Example:
● Target-specific boards and core devices
● Shared devices: virtio, PCI, SCSI, ACPI
● Backends: raw, qcow2, VNC

23

Creating custom configurations
● configure arguments for backends (and some features)
● default-configs/ files for boards and devices

● Can be customized to remove boards and/or devices
● Introduced in 2009
● Revamped in 2019 with automatic dependencies (kconfig style)

24

Sample default-configs/i386-softmmu.mak
Uncomment the following lines to disable these optional
devices:
#CONFIG_AMD_IOMMU=n
#CONFIG_APPLESMC=n
#CONFIG_FDC=n
...

Boards:
#
CONFIG_ISAPC=y
CONFIG_I440FX=y
CONFIG_Q35=y
CONFIG_MICROVM=y

25

Reduced default-configs/i386-softmmu.mak
CONFIG_MICROVM=y
CONFIG_SERIAL_ISA=y
CONFIG_WDT_IB700=y

CONFIG_VIRTIO_BALLOON=y
CONFIG_VIRTIO_BLK=y
CONFIG_VIRTIO_NET=y
CONFIG_VIRTIO_RNG=y
CONFIG_VIRTIO_SCSI=y
CONFIG_VIRTIO_SERIAL=y

● Remember to configure --without-default-devices!

26

Essential vs. accidental complexity
● Essential complexity: a property of the problem you are

trying to solve
● Accidental complexity: a property of the program that

solves the problem
● What seems accidental complexity to you now, may

become essential tomorrow
● Or may already be essential

27

#define QEMU_GENERIC(x, ...) \

 QEMU_GENERIC_(typeof(x), __VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

/* There will be extra arguments, but they are not used. */

#define QEMU_GENERIC_(x, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, count, ...) \

 QEMU_GENERIC##count(x, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)

/* Two more helper macros, this time to extract items from a parenthesized

 * list.

 */

#define QEMU_FIRST_(a, b) a

#define QEMU_SECOND_(a, b) b

/* ... and a final one for the common part of the "recursion". */

#define QEMU_GENERIC_IF(x, type_then, else_) \

 __builtin_choose_expr(__builtin_types_compatible_p(x, \

 QEMU_FIRST_ type_then), \

 QEMU_SECOND_ type_then, else_)

Accidental complexity

28

● Concurrent I/O
● Serial port TLS
● Hotplug
● Stable CPU models after hardware upgrade
● Stable hardware models after VMM upgrade
● Live migration
● Boot a distribution kernel

Essential complexity

29

What’s next?

30

Multi-process split
● vhost-user as the sanctioned multi-process interface
● Out-of-process block layer

● Performance improvements
● Finer-grained seccomp filters

31

Easier configuration
● List what is enabled by default

● PCI devices
● virtio devices
● On-board devices

● Text file configuration of host components

32

Documentation
● QEMU 4.0: initial port of documentation to Sphinx
● Work in progress to reorganize and rethink the manual
● Document best practices for running QEMU securely

33

● Know your usecase
● Know your customer
● Talk to the developers

Conclusions

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

34

Thank you

How much code is shared across targets?
 Look at linker command lines
 Associate object files to executables, count occurrences

1 5 10 15 20 25 30 35 40 45 50 55 60 65 67
0

100

200

300

400

500

#
 fi

le
s

Target-specific Shared devices Shared coreSystem/user emulation base

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

