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Why this talk?
● “Why are we investing in QEMU?”
● “I heard that QEMU is not secure”
● “Why do you even need a floppy disk controller?”
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Is QEMU big?

Yes!
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How big?
$ git ls-tree -r --full-name HEAD | awk '/.c$/ {print $4}'

● Excluding submodules, C files only:
● ~2800 files, 1.650.000 lines of C code
● Of these, 800 files and 150.000 lines are tests

● Also excluded:
● Header files (~10% of C code)
● Build and test scripts written in other language
● Test data
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Is QEMU too big?

Maybe!
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Let’s see...
● Too big for some usecases or in general?
● Why do you care about size?
● Do you know how to measure size?
● Have you measured it?
● Is QEMU’s complexity essential?
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QEMU can...
● … emulate other processors
● … emulate your processor
● … run old operating systems
● … run foreign Linux binaries
● … use KVM/HAX/HVF/WHPX for CPU virtualization
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Know your usecase
● … emulate other processors
● … emulate your processor
● … run old operating systems
● … run foreign Linux binaries
● … use KVM/HAX/HVF/WHPX for CPU virtualization

Answer: ./configure --target-list=...
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Know your usecase
● … emulate other processors
● … emulate your processor
● … run old operating systems
● … run foreign Linux binaries
● … use KVM/HAX/HVF/WHPX for CPU virtualization

Answer: ./configure --disable-tcg
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Is your QEMU executable too big?

And how does that affect you?
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Why do you care?
● Attack surface
● Disk/memory footprint
● Startup time
● Number of bugs
● Customer support
● Cost of auditing for security
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Attack surface
● Guest device drivers
● Management interface (QMP)
● Migration data
● Image formats
● ELF parsing
● VNC server
● Not all code is created equal
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Vulnerabilities
● Of the top 100 vulnerabilities reported for QEMU:

● 65 were not guest exploitable
● 3 were not in QEMU :)
● 5 did not affect x86 KVM guests
● 3 were not related to the C language
● Only 6 affected devices normally used for IaaS

● The most recent of these 6 was reported in 2016
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Attack surface
● Have you secured your network?
● What data do your customers provide to you?

● Kernel images
● Disk images
● VM snapshots (migration data)

● Are your guests sandboxed (SELinux, seccomp, …)?
● Is your kernel up-to-date?
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However!
● Developers want to hear from you!
● Patches are welcome, but suggestions are too!
● What code would you like to configure out?
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Footprint and startup time
● Measured similarly: RSS, binary size, shared library count
● Let’s look at QEMU RSS:

● moxie, -M none -display none: 21 MiB
● moxie, -M moxiesim -accel qtest -display none: 21 MiB
● x86_64, -S -M none -accel qtest -display none: 27 MiB
● x86_64, -S -M pc -accel qtest -display none: 33 MiB
● x86_64, -S -M pc -accel kvm -display none: 33 MiB
● x86_64, -S -M pc -accel kvm -display gtk: 62 MiB
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Footprint and startup time
● Always measure it!

● RSS
● Shared libraries
● Time to first non-firmware instruction

● Beware of wrong assumptions
● Text is shared across multiple VMs
● Not all text in a shared library will be in memory
● Firmware runs as fast as hardware (and less security sensitive)
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Most of the memory footprint is shared
● This QEMU binary (3.1 from Fedora 30) is 12.5 MiB big
● It loads 99 shared libraries, for another 43.5 MiB
● Code that is never used never reaches memory

ldd /usr/bin/qemu-system-x86_64
  | awk 'NF>=3 {print $3}' |sort -u | xargs size
  | awk '{sum += $4} END {print sum}'
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QEMU is already modular
● QEMU backends can be loaded from .so modules
● These link to 77 more shared libraries (215 MiB more!)

ldd /usr/lib64/qemu/*.so
  | awk 'NF>=3 {print $3}' |sort -u | xargs size
  | awk '{sum += $4} END {print sum}'
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Dependencies can be configured out

libc.so.6
librt.so.1
libstdc++.so.6
libm.so.6
libgcc_s.so.1
libpthread.so.0
libutil.so.1

libgthread-2.0.so.0
libglib-2.0.so.0
libpcre.so.1
libnettle.so.4
libpixman-1.so.0

● Full (default) build: 176 shared libraries
● Minimal build: 16 libraries, total size 19 MiB, RSS 16 MiB

libseccomp.so.2
libaio.so.1
libnuma.so.1
libz.so.1



22

Bugs, auditing and customer support
● Know your environment!

● Do your customers need SDL/GTK+ backends?
● Do your customers need audio backends?
● Which devices will be configured in your virtual machines?

● Example:
● Target-specific boards and core devices
● Shared devices: virtio, PCI, SCSI, ACPI
● Backends: raw, qcow2, VNC
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Creating custom configurations
● configure arguments for backends (and some features)
● default-configs/ files for boards and devices

● Can be customized to remove boards and/or devices
● Introduced in 2009
● Revamped in 2019 with automatic dependencies (kconfig style)
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Sample default-configs/i386-softmmu.mak
# Uncomment the following lines to disable these optional
# devices:
#CONFIG_AMD_IOMMU=n
#CONFIG_APPLESMC=n
#CONFIG_FDC=n
...

# Boards:
#
CONFIG_ISAPC=y
CONFIG_I440FX=y
CONFIG_Q35=y
CONFIG_MICROVM=y
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Reduced default-configs/i386-softmmu.mak
CONFIG_MICROVM=y
CONFIG_SERIAL_ISA=y
CONFIG_WDT_IB700=y

CONFIG_VIRTIO_BALLOON=y
CONFIG_VIRTIO_BLK=y
CONFIG_VIRTIO_NET=y
CONFIG_VIRTIO_RNG=y
CONFIG_VIRTIO_SCSI=y
CONFIG_VIRTIO_SERIAL=y

● Remember to configure --without-default-devices!
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Essential vs. accidental complexity
● Essential complexity: a property of the problem you are 

trying to solve
● Accidental complexity: a property of the program that 

solves the problem
● What seems accidental complexity to you now, may 

become essential tomorrow
● Or may already be essential
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#define QEMU_GENERIC(x, ...) \

    QEMU_GENERIC_(typeof(x), __VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

/* There will be extra arguments, but they are not used.  */

#define QEMU_GENERIC_(x, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, count, ...) \

    QEMU_GENERIC##count(x, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)

/* Two more helper macros, this time to extract items from a parenthesized

 * list.

 */

#define QEMU_FIRST_(a, b) a

#define QEMU_SECOND_(a, b) b

/* ... and a final one for the common part of the "recursion".  */

#define QEMU_GENERIC_IF(x, type_then, else_)                                   \

    __builtin_choose_expr(__builtin_types_compatible_p(x,                      \

                                                       QEMU_FIRST_ type_then), \

                          QEMU_SECOND_ type_then, else_)

Accidental complexity
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● Concurrent I/O
● Serial port TLS
● Hotplug
● Stable CPU models after hardware upgrade
● Stable hardware models after VMM upgrade
● Live migration
● Boot a distribution kernel

Essential complexity
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What’s next?
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Multi-process split
● vhost-user as the sanctioned multi-process interface
● Out-of-process block layer

● Performance improvements
● Finer-grained seccomp filters
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Easier configuration
● List what is enabled by default

● PCI devices
● virtio devices
● On-board devices

● Text file configuration of host components
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Documentation
● QEMU 4.0: initial port of documentation to Sphinx
● Work in progress to reorganize and rethink the manual
● Document best practices for running QEMU securely
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● Know your usecase
● Know your customer
● Talk to the developers

Conclusions



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat
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Thank you



How much code is shared across targets?
 Look at linker command lines
 Associate object files to executables, count occurrences
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