


Safe harbor statement

The following is intended to outline our general product direction. It is intended for information purposes 
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, 
or functionality, and should not be relied upon in making purchasing decisions. 

The development, release, timing, and pricing of any features or functionality described for Oracle’s 
products may change and remains at the sole discretion of Oracle Corporation.

2



John Johnson
Elena Ufimtseva
Jag Raman
Oracle Virtualization
November 1, 2019

Multi-process QEMU
2019 KVM Forum

3



Architecture overview 

Agenda

1

2 Current status and usage

4



Architecture overview 

Agenda 

1

5



QEMU as cloud HV

§ QEMU is HV of choice in many cloud environments

§ Public clouds can host VMs from many customers
Vast majority of these customers are running workloads in the cloud

taking advantage of the scalability and flexibility of public clouds
But some can be malevolent actors 

trying to look into other customers’ VMs

§ Public clouds need to plan for the worst case

6



Cloud defense mechanisms

§ Use a different HV
But QEMU provides many features desirable in a cloud environment

§ Minimize QEMU
Reduce attack surface by configuring as few devices and services as possible
Use virtio devices and virtio-user daemons to further reduce surface
But this reduces ‘lift and shift’ capability since existing OS instances may rely on legacy devices

§ Run each QEMU instance in its own container
Place each VM’s data in the container
Use SELinux or AppArmour policies to restrict access of processes within each container
These policies apply to processes, and QEMU is a single process

7



Monolithic QEMU

§ QEMU is a monolithic process that combines many different functionalities
VM control plane

Initial guest setup and monitoring
Live-migration, hot-plug, storage snapshots etc.

CPU and chipset emulation
Executes guest under KVM
Handles guest exits, interrupts, etc.

IO device Emulation
SW emulation of IO devices

§ All these functionalities require QEMU to access many host services

§ Any exploit can allow a malevolent guest to gain all of QEMU’s access rights

8



Current monolithic QEMU

9

CPU/chipset 
emulation

LSI 895 emulation
QEMU Guest

IDE emulation E1000 emulation

VGA emulation USB emulation

QEMU control plane

KVM



Running QEMU in multiple processes

§ Many security policies are process based
SELinux has rules to limit processes as what files or device objects it can access
Seccomp can limit processes as what system calls they can execute

§ Separating QEMU into multiple processes allows finer-grained privileges to be assigned to each one
Disk controller emulation process only given access to disk images belonging to the guest

iSCSI emulation can be limited to iSCSI ports and storage host IPs
All device emulation processes can be limited from using fork() or exec() to create a host shell

10



Device emulation in separate process

§ Good place to start for a number of reasons
Largest surface a malevolent guest could attack

provided by the large number of devices QEMU can emulate
Ease of implementation

device emulation internally implemented as objects within QEMU
object method boundaries can be used as process separation point

Scalability
number of processes can scale to number of devices in VM

11



QEMU with device emulation in separate processes

12

CPU/chipset 
emulation

LSI 895 emulation

QEMU

Guest

IDE emulation

E1000 emulation

QEMU control plane

KVM



QEMU object model

§ Class-based inheritance model
“object” is super-class

§ “machine” class models platform
Initializes emulated system configuration

§ “device” class models IO devices
Most device emulation code is in objects of this sub-class

§ “bus” class models IO buses
Enumerates child devices of an IO bus

13



QEMU initialization

§ QEMU command line options are parsed
-machine, -device, -blockdev options parsed

§ Device backends initialized
Placed on lists so they can be found by their associated device objects

§ Machine object initialized
Hand crafts platform built-in device objects

host bridge, IDE, APIC, serial, etc. 

§ Device objects initialized
Looking up any backends they need

14



QEMU objects for SCSI drive

15

pc-i440fx-machine PCI
file backend

lsi53c895a SCSI

scsi-hd



Emulation process

§ Runs unmodified device and bus objects from monolithic QEMU
Built from same QEMU source tree
Startup handshake to ensure QEMU and remote process are from same build

§ Runs unmodified device backends from monolithic QEMU
Also built from QEMU tree
Same command line arguments used in both QEMU and remote process

§ New remote machine class object
Replaces machine object in monolithic QEMU
Performs similar functions

creates initial machine from configuration messages from QEMU
handles interrupt and IOMMU requests from device models

16



Emulation process cont.

§ Proxy service to talk to QEMU
Instantiates machine object
Instantiates device objects from QEMU configuration messages
Creates device backends from command line arguments
Routes requests from QEMU to device objects

e.g., guest reads and writes to address space of device
Routes machine requests back to QEMU

e.g., IOMMU mapping requests

17



Emulation process

18

remote machine PCI
file backend

lsi53c895a SCSI

scsi-hd



QEMU changes

§ New remote process manager
Manages communication with emulation process
Created with new “–remote” command line argument

-remote rid=<rid>,socket=<socket path>
communicates with existing process over given socket

-remote rid=<rid>,command=“<emulation process args>”
creates socket and executes given command

§ No Device backends - only needed in emulation process

19



QEMU changes

§ Proxy objects replace the device emulation objects
Forwards guests events, such as MMIOs, to emulation process
Specified by new rid=<rid> option for -device

-device lsi53c895a,id=scsi0 specifies traditional emulation within QEMU
-device lsi53c895a,id=scsi0,rid=disk-proc specifies remote emulation
“disk-proc” is ID of remote process manager to forward requests to

Exist in QEMU at same point the object and bus hierarchy as device object it replaces
e.g., LSI SCSI proxy is a sub-class of “pci-device” and is a child of a PCI bus object

§ Not all devices emulation objects need proxies
Only those with guest interactions
e.g., SCSI controller does, but SCSI devices do not

20



Proxy object hierarchy for LSI SCSI controller

§ “pci-device-proxy” class forwards guest config space 
reads and writes to emulation process, mostly for 
BARs and interrupts

§ “lsi53c895a-proxy” class forwards guest MMIOs to 
the device memory space to emulation process.

21

lsi53c895a-proxy

pci-device-proxy

pci-device

device

object



QEMU objects left behind

22

pc-i440fx-machine PCI

lsi53c895a-proxy



Putting it all together

23

proxy service

remote machine PCI file backend

lsi53c895a SCSI

scsi-hd

pc-i440fx-machine PCI

lsi53c895a-proxy

QEMU

emulation process



Agenda

2 Current usage and status

24



I want to try it!

§ Clone it from http://github.com/oracle/qemu

§ Configure it with --enable-mpqemu

§ More command-line options?
Not really! “-remote”, “rid=”

§ One device per process?
Nope!

§ One remote process?
Nope, can have more!

25



Try with lsi53c895a

qemu-system-x86_64 -name "aww_qemu" -machine q35,accel=kvm \

-smp sockets=1,cores=1,threads=1 -m 2048 \

-object memory-backend-file,id=mem,mem-path=/dev/shm/,size=2G,share=on \

-numa node,memdev=mem -drive format=raw,file=/root/ol7.qcow2 \

-device lsi53c895a,id=lsi0,rid=8 \

-device scsi-hd,id=drive2,drive=drive_image2,bus=lsi0.0,scsi-id=0,rid=8 \

-remote rid=8,command=”-drive id=drive_image2,,file=/root/remote-process-disk.img” \

-boot d -monitor stdio -vnc :0

26



Functionality

q QMP monitor and HMP commands

q Device hot-plug

q Live Migration

q SELinux policies

q Libvirt support

27



Teach your device to run in a separate process

§ Write proxy object for QEMU
Leverage current PCI proxy for PCI devices

§ Add your device’s object to remote process build

§ Add QMP/HMP commands that manage your device to remote process build

28



Future work

q Work with KVM/QEMU community, address feedback more efficiently

q Add more device types

q Improve performance
Shorten path for MMIOs

q Security hardening

q Libvirt support upstreaming

29



Performance

30



MMIO Acceleration

§ Impact on CPU usage

§ Delay in processing MMIO
• Return to QEMU
• Syscall overhead

31

VM KVM Remote KVM VM

VM KVM RemoteQEMU QEMU KVM VM

Delay

§ Accelerated MMIO processing



Thank you

John, Elena and Jag

32


