
1

Copyright © 2019 Red Hat Inc.

Micro-Optimizing
KVM VM-Exits
KVM Forum 2019
Nov 1 2019 – Lyon, France

Andrea Arcangeli <aarcange at redhat.com>

Distinguished Engineer

2

Copyright © 2019 Red Hat Inc.

Agenda
● Example of problematic workloads to virtualize efficiently that

currently trigger frequent VM-Exits with upstream KVM
● Recap of the different kinds of speculative execution attacks

and mitigations
➢ Not about HT/SMT (orthogonal and not enough time)

● Benchmarks of the current (kernel v5.3) speculative execution
mitigations on VMX and SVM

● Two proposals to micro optimize the KVM VM-Exits in the host

3

Copyright © 2019 Red Hat Inc.

Hard to virtualize guest workloads
● The most effective way optimize the guest mode is to reduce the number of VM-Exits

with:
➢ device-assignment for I/O with hardware devices (VFIO, IOMMU, VT-d, SR-IOV, ...)

✔ Network | storage (NVME/SSD/SCSI) | GPU | RDMA
➢ vhost-user-blk/scsi/net for virtualized I/O

● Some guest workloads will still flood KVM with VM-Exits, for example:
➢ Guest scheduling events on idle vCPUs

✔ cpuidle-haltpoll upstream guest idle governor makes this case a lesser concern
✗ It risks wasting CPU in guest mode if the host isn’t idle

➢ Guest high resolution timers

4

Copyright © 2019 Red Hat Inc.

Guest scheduling events on idle vCPUs
if (fork()) {

 while (n--) {

 read(pipe1[0], buf, 1);

 write(pipe2[1], buf, 1);

 }

 wait(NULL);

} else {

 while (n--) {

 write(pipe1[1], buf, 1);

 read(pipe2[0], buf, 1);

 }

}

perf kvm stat record -a sleep 1

HOT CAN_GET_HOT ????

 VM-EXIT Samples Samples%

 MSR_WRITE 605044 75.08%

 HLT 199774 24.79%

 EXTERNAL_INTERRUPT 494 0.06%

 PREEMPTION_TIMER 297 0.04%

 PENDING_INTERRUPT 290 0.04%

 MSR_READ 8 0.00%

 EPT_MISCONFIG 6 0.00%

 PAUSE_INSTRUCTION 3 0.00%

5

Copyright © 2019 Red Hat Inc.

Guest high resolution timers
sigevent.sigev_notify = SIGEV_SIGNAL;

sigevent.sigev_signo = SIGALRM;

sigevent.sigev_value.sival_ptr = &timer;

if (timer_create(CLOCK_REALTIME, &sigevent, &timer) < 0)

 perror("timer_create"), exit(1);

itimerspec.it_value.tv_sec = 0;

itimerspec.it_value.tv_nsec = 1;

itimerspec.it_interval.tv_sec = 0;

itimerspec.it_interval.tv_nsec = 1;

if (timer_settime(timer, 0, &itimerspec, NULL) < 0)

 perror("timer_settime"), exit(1);

for(;;) pause();

perf kvm stat record -a sleep 1

HOT CAN_GET_HOT ????

 VM-EXIT Samples Samples%

 MSR_WRITE 338793 56.54%

 PENDING_INTERRUPT 168431 28.11%

 PREEMPTION_TIMER 91723 15.31%

 EXTERNAL_INTERRUPT 234 0.04%

 HLT 65 0.01%

 MSR_READ 6 0.00%

 EPT_MISCONFIG 6 0.00%

6

Copyright © 2019 Red Hat Inc.

Hard to virtualize guest workloads
● Some databases incidentally tend to be very heavy in terms of:

➢ Frequent scheduling on potentially otherwise idle vCPU
➢ Programming high frequency timers running at fairly high frequency

● Even an increase of 10% in the computation time of guest mode compared to
bare metal can become quite problematic
➢ Every 1% lost anywhere matters if the maximum you can lose is 10%

● Performance regressed for those hard to virtualize workloads since Jan 4 2018
➢ “spectre-v2” default retpoline mitigation is important in the KVM host
➢ “spec_store_bypass_disable=seccomp spectre_v2_user=seccomp” is still

used as the guest default

7

Copyright © 2019 Red Hat Inc.

CPU 3
CORE 1

RUNQUEUE

CPU 2
CORE 1

RUNQUEUE

CPU 1
CORE 0

RUNQUEUE

CPU 0
CORE 0

RUNQUEUE

Recap: 4 different attack targets

Kernel Mode / KVM

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)

Running
tasks

2 HT/SMT
1 CORE

2 HT/SMT
1 CORE

User
Mode

(user task)

8

Copyright © 2019 Red Hat Inc.

CPU 3
CORE 1

RUNQUEUE

CPU 2
CORE 1

RUNQUEUE

CPU 1
CORE 0

RUNQUEUE

CPU 0
CORE 0

RUNQUEUE

Kernel attack (retpoline/IBRS/verw/PTI)

Kernel
Mode
KVM

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)
2 HT/SMT
1 CORE

2 HT/SMT
1 CORE

User
Mode

(user task)
Running

tasks

9

Copyright © 2019 Red Hat Inc.

CPU 3
CORE 1

RUNQUEUE

CPU 2
CORE 1

RUNQUEUE

CPU 1
CORE 0

RUNQUEUE

CPU 0
CORE 0

RUNQUEUE

Context switch attack (IBPB/RSBfill)

Kernel
Mode
KVM

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)
2 HT/SMT
1 CORE

2 HT/SMT
1 CORE

User
Mode

(user task)
Running

tasks

10

Copyright © 2019 Red Hat Inc.

CPU 3
CORE 1

RUNQUEUE

CPU 2
CORE 1

RUNQUEUE

CPU 1
CORE 0

RUNQUEUE

CPU 0
CORE 0

RUNQUEUE

HT/SMT attack (STIBP/nosmt/ASI)

Kernel
Mode
KVM

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)
2 HT/SMT
1 CORE

2 HT/SMT
1 CORE

User
Mode

(user task)
Running

tasks

11

Copyright © 2019 Red Hat Inc.

CPU 3
CORE 1

RUNQUEUE

CPU 2
CORE 1

RUNQUEUE

CPU 1
CORE 0

RUNQUEUE

CPU 0
CORE 0

RUNQUEUE

Within-process JIT attack (SSBD)

Kernel
Mode
KVM

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)

Guest
Mode

(user task)

User
Mode

(user task)
2 HT/SMT
1 CORE

2 HT/SMT
1 CORE

User
Mode

(user task)
Running

tasks

12

Copyright © 2019 Red Hat Inc.

Mitigations opt-outs
● For vulnerabilities that don’t require knowing the code that is running in the CPU:

➢ Meltdown → pti=off
➢ L1TF → l1tf=off
➢ MDS → mds=off
➢ fpu state and other registers no turnoff→

● For vulnerabilities that require knowing the code that is running in the CPU:
➢ Spectre v1 (barrier_nospec/swapgs etc..) → nospectre_v1
➢ Spectre v2 → spectre_v2=off (kernel & context switch & HT attack)
➢ Spectre v2 → spectre_v2_user=off (HT attack only)
➢ SSBD → spec_store_bypass_disable=off (within process attack on the JIT memory from the

JITed code)
● Global turnoff for all: mitigations=off (>= RHEL7.7)

13

Copyright © 2019 Red Hat Inc.

KVM impact of spectre-v2 mitigation
● The spectre-v2 attack on the kernel/KVM by default is mitigated with

retpolines
● retpolines are the best performing mitigation available

➢ On some CPUs it’s a full fix
➢ On some CPUs “risk of an attack low”

✔ On those CPUs RHEL kernels inform you in the boot log that you can
opt-in the full fix with spectre_v2=ibrs

● kvm.ko calls kvm_intel.ko or kvm_amd.ko at every VM-Exit multiple times
through the kvm_x86_ops pointer to functions
➢ This was not optimal before, but it become slower with retpolines causing

extra cost for each single invocation of the kvm_x86_ops virtual methods

14

Copyright © 2019 Red Hat Inc.

struct kvm_x86_ops vmx_x86_ops struct kvm_x86_ops svm_x86_ops

KVM x86 sub-modules with kvm_x86_ops

kvm-intel.ko

kvm.ko

kvm-amd.ko

Guest
Mode

re
tp

ol
in

e

VM
-E

xi
t

re
tp

ol
in

e

15

Copyright © 2019 Red Hat Inc.

hrtimer 1sec - top 10 retpolines - VMX
vcpu_enter_guest+772

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 397680

vcpu_enter_guest+168

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 198848

vcpu_enter_guest+486

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 198801

vcpu_enter_guest+423

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 198793

vcpu_enter_guest+575

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 198771

vmx_vcpu_run.part.88+358

vcpu_enter_guest+423

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 198736

vcpu_enter_guest+1689

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 197697

vcpu_enter_guest+4009

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 132405

skip_emulated_instruction+48

kvm_skip_emulated_instruction+82

handle_wrmsr+102

vcpu_enter_guest+772

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 131046

handle_wrmsr+85

vcpu_enter_guest+772

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 131043

16

Copyright © 2019 Red Hat Inc.

hrtimer 1sec - top 10 retpolines – SVM
vcpu_enter_guest+772

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 227076

vcpu_enter_guest+168

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 113601

vcpu_enter_guest+486

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 113414

vcpu_enter_guest+423

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 113386

vcpu_enter_guest+575

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 113371

vcpu_enter_guest+1689

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 112579

vcpu_enter_guest+4009

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 75812

kvm_get_rflags+28

svm_interrupt_allowed+50

vcpu_enter_guest+4009

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 75647

msr_interception+138

vcpu_enter_guest+772

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 74795

kvm_skip_emulated_instruction+49

msr_interception+356

vcpu_enter_guest+772

kvm_arch_vcpu_ioctl_run+263

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 74757

17

Copyright © 2019 Red Hat Inc.

KVM monolithic
● The objective is the retpoline elimination from VM-Exits

➢ remove the kvm_x86_ops
✔ remove kvm.ko

✗ the executable .o objects previously linked in kvm.ko need to be duplicated
and linked statically in both kvm-intel.ko and kvm-amd.ko

● pvops could eliminate retpolines, but they’re suboptimal for iTLB (and RAM) costs
● Only two cons depending on CONFIG_KVM_INTEL and CONFIG_KVM_AMD .config:

➢ Only one of the two options can be set to “=y” at once
✔ Hint: distro kernels sets both “=m”

➢ If both set “=m”, a few MiB of disk space will be lost in /lib/modules/

18

Copyright © 2019 Red Hat Inc.

struct kvm_x86_ops vmx_x86_ops struct kvm_x86_ops svm_x86_ops

KVM x86 sub-modules with kvm_x86_ops

kvm-intel.ko

kvm.ko

kvm-amd.ko

Guest
Mode

re
tp

ol
in

e

VM
-E

xi
t

re
tp

ol
in

e

● No benefit: kvm-intel.ko and kvm-amd.ko can’t be loaded at the same time
➢ Because of hardware constraints

19

Copyright © 2019 Red Hat Inc.

KVM monolithic (no kvm_x86_ops)

kvm-intel.ko
(includes
kvm.ko)

kvm-amd.ko
(includes
 kvm.ko)

Guest
Mode
svm

Guest
Mode
vmx

VM
-E

xi
t

VM
-E

xi
t

● Replace all kvm_x86_ops methods with external calls with the same name, but implemented
differently in kvm-intel.ko and kvm-amd.ko

● Link all kvm.ko code into both kvm-intel.ko and kvm-amd.ko

20

Copyright © 2019 Red Hat Inc.

KVM VM-Exit handler optimization
● kvm_x86_ops (and kvm_pmu_ops) aren’t the only

sources of frequent retpolines during VM-Exits
● Unlike the kvm_x86_ops, invoking the VM-Exit

reason handler pointer to function was optimal if
the retpolines are not enabled
➢ In this case we can add the retpoline

optimization conditional to #ifdef
CONFIG_RETPOLINE

21

Copyright © 2019 Red Hat Inc.

KVM VM-Exit handler optimization - VMX
 if (exit_reason < kvm_vmx_max_exit_handlers
- && kvm_vmx_exit_handlers[exit_reason])
+ && kvm_vmx_exit_handlers[exit_reason]) {
+#ifdef CONFIG_RETPOLINE
+ if (exit_reason == EXIT_REASON_MSR_WRITE)
+ return kvm_emulate_wrmsr(vcpu);
+ else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
+ return handle_preemption_timer(vcpu);
+ else if (exit_reason == EXIT_REASON_PENDING_INTERRUPT)
+ return handle_interrupt_window(vcpu);
+ else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
+ return handle_external_interrupt(vcpu);
+ else if (exit_reason == EXIT_REASON_HLT)
+ return kvm_emulate_halt(vcpu);
+ else if (exit_reason == EXIT_REASON_PAUSE_INSTRUCTION)
+ return handle_pause(vcpu);
+ else if (exit_reason == EXIT_REASON_MSR_READ)
+ return kvm_emulate_rdmsr(vcpu);
+ else if (exit_reason == EXIT_REASON_CPUID)
+ return kvm_emulate_cpuid(vcpu);
+ else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
+ return handle_ept_misconfig(vcpu);
+#endif
 return kvm_vmx_exit_handlers[exit_reason](vcpu);

+EXIT_REASON_VMCALL

22

Copyright © 2019 Red Hat Inc.

KVM VM-Exit handler optimization - SVM
+#ifdef CONFIG_RETPOLINE
+ if (exit_code == SVM_EXIT_MSR)
+ return msr_interception(svm);
+ else if (exit_code == SVM_EXIT_VINTR)
+ return interrupt_window_interception(svm);
+ else if (exit_code == SVM_EXIT_INTR)
+ return intr_interception(svm);
+ else if (exit_code == SVM_EXIT_HLT)
+ return halt_interception(svm);
+ else if (exit_code == SVM_EXIT_NPF)
+ return npf_interception(svm);
+ else if (exit_code == SVM_EXIT_CPUID)
+ return cpuid_interception(svm);
+#endif
 return svm_exit_handlers[exit_code](svm);

23

Copyright © 2019 Red Hat Inc.

hrtimer 1sec - top 5 retpolines – VMX - after
__kvm_wait_lapic_expire+284

vmx_vcpu_run.part.97+1091

vcpu_enter_guest+377

kvm_arch_vcpu_ioctl_run+261

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 2390

@[]: 33410

do_syscall_64+89

]: 267

finish_task_switch+371

__schedule+573

preempt_schedule_common+10

_cond_resched+29

kvm_arch_vcpu_ioctl_run+401

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 103

__schedule+1081

preempt_schedule_common+10

_cond_resched+29

kvm_arch_vcpu_ioctl_run+401

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 103

ktime_get_update_offsets_now+70

hrtimer_interrupt+131

smp_apic_timer_interrupt+106

apic_timer_interrupt+15

vcpu_enter_guest+1119

kvm_arch_vcpu_ioctl_run+261

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 57

delay_fn()
__delay

24

Copyright © 2019 Red Hat Inc.

hrtimer 1sec - top 5 retpolines – SVM - after
ktime_get+58

start_sw_timer+279

restart_apic_timer+85

kvm_set_msr_common+1497

msr_interception+142

vcpu_enter_guest+684

kvm_arch_vcpu_ioctl_run+261

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 499845

ktime_get+58

clockevents_program_event+84

hrtimer_try_to_cancel+168

hrtimer_cancel+21

kvm_set_lapic_tscdeadline_msr+43

kvm_set_msr_common+1497

msr_interception+142

vcpu_enter_guest+684

kvm_arch_vcpu_ioctl_run+261

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 42848

clockevents_program_event+148

hrtimer_try_to_cancel+168

hrtimer_cancel+21

kvm_set_lapic_tscdeadline_msr+43

kvm_set_msr_common+1497

msr_interception+142

vcpu_enter_guest+684

kvm_arch_vcpu_ioctl_run+261

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 42766

lapic_next_event+28

clockevents_program_event+148

hrtimer_try_to_cancel+168

hrtimer_cancel+21

kvm_set_lapic_tscdeadline_msr+43

kvm_set_msr_common+1497

msr_interception+142

vcpu_enter_guest+684

kvm_arch_vcpu_ioctl_run+261

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 42723

ktime_get+58

clockevents_program_event+84

hrtimer_start_range_ns+528

start_sw_timer+356

restart_apic_timer+85

kvm_set_msr_common+1497

msr_interception+142

vcpu_enter_guest+684

kvm_arch_vcpu_ioctl_run+261

kvm_vcpu_ioctl+559

do_vfs_ioctl+164

ksys_ioctl+96

__x64_sys_ioctl+22

do_syscall_64+89

]: 41887

ktime_get() apic->write();ktime_get() ktime_get()

25

Copyright © 2019 Red Hat Inc.

Micro benchmark disclaimer
● The following slides are going to show only micro benchmarks
● All micro benchmarks are not representative of useful or real life workloads or real life

software applications or real life software products
● The results shown in the next slides should not be taken at face value and they don’t

represent the real impact of the software mitigations against speculative execution side
channel attacks

● All real and useful software applications running on Linux will show completely different
benchmark results (i.e. a much lower impact) than what is shown in this slide deck

● Micro benchmarks in this slide deck are provided with the only purpose of
➢ explaining how the software mitigation works
➢ justifying to the community the KVM monolithic optimization developments or/and

equivalent software optimizations

26

Copyright © 2019 Red Hat Inc.

1 million CPUID loop
● Only useful to measure the VM-Exit latency

for (i=0; i < 1000000; i++)

 asm volatile("cpuid"

 : "=a" (eax),

 "=b" (ebx),

 "=c" (ecx),

 "=d" (edx)

 : "0" (eax), "2" (ecx)

 : "memory");

27

Copyright © 2019 Red Hat Inc.
Host mitigation settings

Guest mitigation settings

28

Copyright © 2019 Red Hat Inc.
Host mitigation settings

Guest mitigation settings

29

Copyright © 2019 Red Hat Inc.

Guest mitigation settings

30

Copyright © 2019 Red Hat Inc.

Guest mitigation settings

31

Copyright © 2019 Red Hat Inc.

Why l1tf=off is slower than l1tf=flush?
● This happens without MDS_NO and without mds=off and

with MD_CLEAR set in the host cpuid
➢ The l1flush implies verw, but is conditional by default:

✔ After l1tf=off KVM executes verw at every VM-Enter
● CPUs with RCDL_NO always behave like l1tf=off by default

➢ Should still be faster than l1tf=cond?

32

Copyright © 2019 Red Hat Inc.

Guest mitigation settings

33

Copyright © 2019 Red Hat Inc.

Guest mitigation settings

34

Copyright © 2019 Red Hat Inc.

Guest mitigation settings

35

Copyright © 2019 Red Hat Inc.

Mitigation opt-out with the most effect on VM-Exits: spectre_v2=off
i.e. optimizing away retpolines

Guest mitigation settings

36

Copyright © 2019 Red Hat Inc.

Opt-in options are marked with “/”
Unlikely to be helpful (and spectre_v2=ibrs is missing on upstream 5.3.0)

Guest mitigation settings

37

Copyright © 2019 Red Hat Inc.

Opt-in options are marked with “/”
Unlikely to be helpful (and spectre_v2=ibrs is missing on upstream 5.3.0)

Guest mitigation settings

38

Copyright © 2019 Red Hat Inc.

Guest mitigation settings

39

Copyright © 2019 Red Hat Inc.

Guest mitigation settings

40

Copyright © 2019 Red Hat Inc.

Why ssbd=off in guest speed up KVM?
● spec_store_bypass_disable=auto is the guest and host default

➢ In practice the default is spec_store_bypass_disable=seccomp
● NOTE: the guest cpuid loop doesn’t run under SECCOMP
● Problem: nearly everything else nowadays occasionally uses

SECCOMP (sshd etc..)
● The first use of SECCOMP in guest will write SSBD to

SPEC_CTRL and will forever slowdown the guest
➢ rdmsr(SPEC_CTRL) forced at every VM-Exit

41

Copyright © 2019 Red Hat Inc.

spectre_v2=off was already set
● spectre_v2_user=off was already implied by

spectre_v2=off at the previous step
➢ If not disabling spectre_v2_user too, SPEC_CTRL

may still be written to for STIBP
● spectre_v2_user=auto is the upstream default

➢ With most distro .config the default is
spectre_v2_user=seccomp

42

Copyright © 2019 Red Hat Inc.

ssbd = spectre_v2_user = seccomp
● =seccomp was a good default on un-embargo day (as a “catch-all”)
● =seccomp looks too coarse by now

➢ Doesn’t only hurt the guest performance
✔ It hurts all SECCOMP users even on bare metal

✗ More and more software runs under SECCOMP including Kubernetes pods and
podman containers

● =prctl would be a preferred default now because the apps who need STIBP or SSBD
should have added prctl(PR_SET_SPECULATION_CTRL)

● There has never been a guarantee that code requiring STIBP or SSBD runs under
SECCOMP in the first place

● SECCOMP users are adding SECCOMP_FILTER_FLAG_SPEC_ALLOW to their userland as
band-aid for the too coarse default that slowdown SECCOMP on bare metal

43

Copyright © 2019 Red Hat Inc.

SSBD spec_store_bypass_disable=prctl
● Who really needs to set SSBD?

➢ JIT running un-trusted bytecode (i.e. desktop usage of javaws/applet)
✔ to avoid the JITed code to read the “in-process” memory of the JIT

● We patched OpenJDK JIT downstream with the prctl() during the SSBD embargo
● Upstream OpenJDK makes no guarantees of "in-process" data confidentiality

➢ The prctl() was never submitted to OpenJDK
✔ If not even the JIT enforces SSBD, why all non-JIT SECCOMP users should?

● Overall the prctl() should be worth it if the javaws/applet runs with reduced permissions
● SSBD provides no benefits after a privilege escalation that takes over the code running in any

SECCOMP jail
➢ After privilege escalation any malicious code can read the memory of the thread regardless if

SSBD is set or not
➢ Bad fit for the SECCOMP model

44

Copyright © 2019 Red Hat Inc.

STIBP spectre_v2_user=prctl
● In theory STIBP is a good fit for the SECCOMP model
● In practice the spectre-v2 HT attack prevented by STIBP would

require to know 1) the code and 2) the virtual address it is running at
in the other hyper-thread

● Security sensitive code jailed under SECCOMP would better run also
under PID namespaces/VM isolation
➢ If so the jailed code can’t know what’s running in the other hyper-

thread
● Even without PID namespaces/VM isolation the address is it running

at is randomized with ASLR

45

Copyright © 2019 Red Hat Inc.

STIBP spectre_v2_user=prctl
● Since MDS very few CPUs are immune from MDS without nosmt

➢ Which would render STIBP irrelevant by disabling HT
● MDS can be attacked with HT enabled even without knowing what’s running

in the other CPU and the virtual address it is running at
➢ PID namespaces and ASLR won’t help with MDS

● STIBP mitigates spectre-v2-HT from a SECCOMP jail that could still be able to
exploit MDS

● Even retpolines aren’t a full fix on some CPU, yet they’re the default upstream
➢ A spectre-v2 attack against the kernel would have a more spread spectrum

than a spectre-v2 attack against HT

46

Copyright © 2019 Red Hat Inc.

Guest mitigation settings

47

Copyright © 2019 Red Hat Inc.

48

Copyright © 2019 Red Hat Inc.

KVM monolithic
20.7% difference in compute time
default mitigations in guest and host

49

Copyright © 2019 Red Hat Inc.

KVM monolithic +
spec_store_bypass_disable=prctl +
spectre_v2_user=prctl = 57.3% difference in compute time

50

Copyright © 2019 Red Hat Inc.

`

Mitigation opt-out with the most
effect on VM-Exits: spectre_v2=off
i.e. optimizing away retpolines

51

Copyright © 2019 Red Hat Inc.

KVM monolithic
13.2% difference in compute time
default mitigations in guest and host

52

Copyright © 2019 Red Hat Inc.

KVM monolithic
4.1% difference in compute time
even with mitigations=off

53

Copyright © 2019 Red Hat Inc.

KVM monolithic
5.8% difference in compute time
default mitigations in guest and host

54

Copyright © 2019 Red Hat Inc.

KVM monolithic
7.6% difference in compute time
default mitigations in guest and host

55

Copyright © 2019 Red Hat Inc.

KVM monolithic status
● KVM monolithic kernel patch-set posted on kvm@ and lkml@

https://lkml.kernel.org/r/20190928172323.14663-1-aarcange@redhat.com
● Kbuild options need more adjustment
● Some warnings from duplicated exports
● Final cleanup of kvm_x86_ops pending because it can be

done incrementally (cleaner)
➢ kvm_pmu_ops already removed

https://lkml.kernel.org/r/20190928172323.14663-1-aarcange@redhat.com

linkedin.com/company/red-hat

youtube.com/user/
RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

56

Copyright © 2019 Red Hat Inc.

Thank you
Red Hat is the world’s leading provider of

enterprise open source software solutions.

Award-winning support, training, and

consulting services make

Red Hat a trusted adviser to the Fortune 500.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

