
1

Post-Copy Live Migration on Pass-through

Devices

Kevin Tian (on behalf of Yan Zhao), Shaopeng He

Intel Corporation

2

Legal Disclaimer

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a

particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in

trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to

change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published

specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or

by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

3

Live Migration

• Lively migrate the VM state between server nodes
 CPU state

 Memory state

 Device state

 VM configuration

• Cornerstone capability in data centers and clouds
 Load balancing, SLA, infrastructure maintenance, etc.

4

Memory State: Pre-Copy vs. Post-Copy

Pre-Copy Post-Copy

1. Copy the entire guest memory to dest

2. Iteratively copy pages dirtied in previous round

3. Copy CPU/device state and remaining

dirty pages to dest
1. Copy CPU/device state to dest

Stop VM on src

Resume VM on dest

2. Copy the entire guest memory

Stop VM on src

Resume VM on dest

Mature and Reliable Predictable and faster

5

…

A Detailed Flow of Post-Copy Live Migration

Source Target

POSTCOPY ADVISE Discard all pages

CPU and device state

POSTCOPY LISTEN Preparation (e.g. userfaultfd)

POSTCOPY RUN Start VM

Request Page

Copy Page

…

vCPU page fault

POSTCOPY END

Start migration

End migration

Actively Push Pages

6

Challenges with Passthrough Devices

Host has no insight of the device state

Most devices don’t support DMA fault

7

Device State Migration

• Vendor specific definition of ‘device state’
 Standard PCI resource (config space, MMIO BAR, MSI/MSI-X, etc.)

 Vendor specific resource (e.g. hidden state, PF-maintained configuration, etc.)

• Use a wrapper driver for poking the device state
 Use vfio-mdev, by creating a single mdev on top of the device (example)

 Use vfio-pci, by hooking to specific vfio device ops (under discussion)

 Getting/setting device state through the migration region (v8)

https://patchwork.kernel.org/cover/11134695/
https://www.spinics.net/lists/kvm/msg195198.html
https://www.mail-archive.com/qemu-devel@nongnu.org/msg640400.html

8

DMA Page Prefault

• Bear the fact that most devices don’t support DMA fault

• Prefault through device specific mediation
 Trap any guest operation which may cause DMA access

 Decode the operation to find out pages that may be used for DMA

 Prefault the pages to userspace for memory pulling

• Device specific mediation policies
 E.g. trap guest MMIO accesses, scan workload descriptors, etc.

Need the capability of dynamic mediation!

9

Dynamic Mediation

• Dynamically turn on mediation when migration starts
 For regions marked as VFIO_REGION_INFO_FLAG_MMAP

 Re-enable pass-through when migration ends

• Introduce a mediation bitmask in migration region
 Indicate which region should be dynamically mediated when migration starts

 Currently defined per MMIO region

 Future

 Implement a sparse structure for finer-grained mediation control

 Event-based notification triggered by mediator

10

Fault-and-Pull

VM

Qemu

Kernel

User

mm

3. postcopy

• Based on userfaultfd
 Introduced in 2015

• For handling vCPU page fault

in userspace

• UFFDIO_COPY (step 4)
 Allocate/copy page and wake up vCPU

userfaultfd

2. Page Request

4. Copy Page

1. Page fault

11

Prefault-and-Pull: Ideal Approach

VM

Qemu

Kernel

User

userfaultfd

mm

4. postcopy

1. Trap

• Leverage userfaultfd interface
 Triggered by mediator

• Separate page copy and vCPU
wakeup
 UFFDIO_COPY (DONTWAKE) + UFFDIO_WAKE

 Allow VFIO map in the middle

• Limitations
 Challenges on finding IOVA->HVA for GUP

 VFIO mappings have been discarded

 KVM may provide GPA->HVA (w/o vIOMMU),
but what about w/ vIOMMU?

 No support of device local memory
MediatorIOMMU

VFIO

3. Page Request

6. vfio map

2. get_user_page

5. Copy Page

7. wakeup

12

Migration_region

Prefault-and-Pull: VFIO Approach

VM

Qemu

Kernel

User

userfaultfd

mm

postcopy

• Built on VFIO migration_region
interface
 A new eventfd for notifying userspace

 Reuse data_region to carry prefault info

 Qemu translates from IOVA into GPA

• CPU page fault continues on
userfaultfd

• Pros
 Specifically designed for IOVA-based

prefault

 Easily extended to cover device local
memoryMediatorIOMMU

VFIO

Fault-and-pull

vfio map

Prefault-and-pull

eventfd

13

Case Study: NIC Passthrough

• Intel xxv710 NIC VF
 New 25G version of widely used Intel 10G NIC, with RDMA supported

 VF interface compatible with 10G NIC and later Intel E800 NIC

• Current prototype puts the VF in reset state before migration
 A quick workaround to avoid copying device state

 Long-term will follow aforementioned direction by doing state save/restore

• Track DMA pages by scanning ring descriptors in target machine
 By mediating guest writes to the ring tail register

 Pull the DMA page from source machine before sending to NIC for DMA R/W

14

Block Diagram

• Same framework for both pre-
copy and post-copy
 Pre-copy: track DMA writes on src

 Post-copy: track DMA accesses on dest

• Mdev device model in PF
driver
 Manages ring mediation

 GET/SET VF configuration data

• Easily extended to support
migration cross different
generations
 Based on unified interface (AVF)

Port 1

embedded switch

PF VF1
Intel

710/810
HW NIC

Kernel

User space

AVF mdev kernel modules

QEMU
VM

avf driver

VFIO to PCI-E
LM module

Kernel

User space

app

netdev

Source Host

Port 1

embedded switch

PF VF1
Intel

710/810
HW NIC

Kernel

User space

QEMU

VFIO to PCI-E
LM module

Target Host

VM

To Be
Migrated In

TOR SWITCH

VFIO mdev driver

Parent Device

mdev MMAP

PF driver: i40e/ice

Classic PF driver

Dirty Page Tracking

VF mdev support

Config Migration

AVF mdev kernel modules

VFIO mdev driver

Parent Device

mdev MMAP

PF driver: i40e/ice

Classic PF driver

Post-Copy Ring Sync

VF mdev support

Config Migration

15

Performance
• Memory-intensive workload with 2GB guest memory

• 10Gbps migration bandwidth

• Network downtime measured by ping command

• Both include the time of device reset

and switch configuration (~300ms)

• Postcopy data is based on optimized

VFIO DMA mapping policy

16

Status and Plan

• Initial prototype work completed

• Future explorations
 Remove reset

 Extend userfaultfd or create VFIO-based interface?

 IOMMU mapping efficiency

 Huge page support

 Device local memory

 Extend to other NICs and device types (e.g. storage)

• Send out precopy RFC first, and then postcopy RFC

17

Q/A

