
© 2019 Western Digital Corporation or its affiliates. All rights reserved. 10/30/2019

The Hype around the RISC-V 
Hypervisor

Alistair Francis <alistair.francis@wdc.com>

Anup Patel <anup.patel@wdc.com>

KVM Forum 2019



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 2

Overview

• RISC-V H-Extension (Alistair)

• RISC-V H-Extension in QEMU (Alistair)

• KVM RISC-V (Anup)

• KVM RISC-V Status & Future Work (Anup)

• KVM RISC-V Demo (Anup)

• Questions



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 3

RISC-V H-Extension
The RISC-V Hypervisor Extension



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 4

RISC-V H-Extension: Spec Status

• Designed to suit both Type-1 (Baremetal) and Type-2 (Hosted) hypervisor

• v0.4-draft was released on 16th June 2019
– This includes feedback from Open Source virtualisation projects

– Additions have happened to the spec since:
• htimedelta/htimedeltah CSR (Proposed by WDC – Merged)

• Dedicated exception causes for Guest page table faults (Proposed by John Hauser – Merged)

• htinst & htval2 CSRs for better MMIO emulation (Proposed by WDC and extended by John Hauser – Merged)

• Separate HIE & HIP CSR for virtual interrupt injection (Proposed by WDC and extended by John Hauser – Merged)

• v0.5-draft released on 30th October 2019 (Today)

• Western Digital’s initial QEMU, Xvisor and KVM ports were based on v0.3

• They have all been updated to the new v0.4 spec
– There were limited software changes required between v0.3 and v0.4

• QEMU required more changes

H-Extension spec close to freeze state



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 5

RISC-V H-Extension: Privilege Mode Changes

• HS-mode = S-mode with hypervisor capabilities and new CSRs

• Two additional modes:
– VS-mode = Virtualized S-mode

– VU-mode = Virtualized U-mode

New execution modes for guest execution

Firmware (OpenSBI)

Hypervisor

Guest Linux

Guest User Space

D
ec

re
as

in
g 

P
ri

vi
le

ge
 L

ev
el

Host User SpaceVU

VS

M

Virtualized World Non-virtualized World

HS

U

HS

M

M-mode Software

HS-mode Software

VS-mode Software

VU-mode Software

U-mode Software



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 6

RISC-V H-Extension: CSR changes

• In HS-mode (V=0)
– “s<xyz>” CSRs point to standard “s<xyz>” CSRs

– “h<xyz>” CSRs for hypervisor capabilities

– “vs<xyz>” CSRs contains VS-mode state

• In VS-mode (V=1)
– “s<xyz>” CSRs point to virtual “vs<xyz>” CSRs

More control registers for virtualising S-mode

HS-mode CSRs for accessing Guest/VM state

vsstatus Guest/VM Status

vsie Guest/VM Interrupt Enable

vsip Guest/VM Interrupt Pending

vstvec Guest/VM Trap Handler Base

vsepc Guest/VM Trap Progam Counter

vscause Guest/VM Trap Cause

vstval Guest/VM Trap Value

vsatp Guest/VM Address Translation

vsscratch Guest/VM Scratch

HS-mode CSRs for hypervisor capabilities

hstatus Hypervisor Status

hideleg Hypervisor Interrupt Delegate

hedeleg Hypervisor Trap/Exception Delegate

htimedelta Hypervisor Guest Time Delta

hgatp Hypervisor Guest Address Translation



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 7

RISC-V H-Extension: Two-stage MMU

• Two-Stage MMU for VS/VU-mode:
– VS-mode page table (Stage1):

• Translates Guest Virtual Address (GVA) to Guest Physical Address (GPA)

• Programmed by Guest (same as before)

– HS-mode guest page table (Stage2):

• Translates Guest Physical Address (GPA) to Host Physical Address (HPA)

• Programmed by Hypervisor

• In HS-mode, software can program two page tables:
– HS-mode page table: Translate hypervisor Virtual Address (VA) to Host Physical Address (HPA)

– HS-mode guest page table: Translate Guest Physical Address (GPA) to Host Physical Address (HPA)

• Format of VS-mode page table, HS-mode guest page table and HS-mode host page table 
is same (Sv32, Sv39, Sv48, ….)

Hardware optimized guest memory management



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 8

RISC-V H-Extension: I/O & Interrupts

• Virtual interrupts injected by updating VSIP CSR from HS-mode

• Software and Timer Interrupts:
– Hypervisor will emulate SBI calls for Guest

• HS-mode guest page table can be used to trap-n-emulate MMIO accesses for:
– Software emulated PLIC

– VirtIO devices

– Other software emulated peripherals

I/O and guest interrupts virtualization



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 9

RISC-V H-Extension: Compare ARM64
How is RISC-V H-Extension compared to ARM64 virtualization?

RISC-V H-Extension v0.4 draft ARM64 (ARMv8.x) Virtualization

No separate privilege mode for hypervisors.
Extends S-mode with hypervisor capabilities (HS-
mode) and Guest/VM run in virtualized S-mode/U-
mode (VS-mode or VU-mode).

Separate EL2 exception-level for hypervisors with 
it’s own <xyz>_EL2 MSRs. The Guest/VM will run in 
EL1/EL0 exception levels.

Well suited for both Type-1 (baremetal) and Type-
2 (hosted) hypervisors. The S<xyz> CSRs access 
from VS-mode map to special VS<xyz> CSRs which 
are only accessible to HS-mode and M-mode.

Special ARMv8.1-VHE Virtualization Host 
Extension for better performance of Type-2 
(hosted) hypervisor. Allows Host kernel (meant for 
EL1) to run in EL2 by mapping <xyz>_EL1 MSRs to 
<abc>_EL2 MSRs in Host mode.

Virtual interrupts for Guest/VM injected using 
VSIP CSR. The hypervisor does not require any 
special save/restore but it will emulate entire PLIC 
in software.

Virtual interrupts for Guest/VM injected using LR 
registers of GICv2/GICv3 with virtualization 
extension. The hypervisor will save/restore LR 
registers and emulate all GIC registers in software 
except GIC CPU registers.



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 10

RISC-V H-Extension: Compare ARM64 (Contd.)
How is RISC-V H-Extension compared to ARM64 virtualization?

RISC-V H-Extension v0.4 draft ARM64 (ARMv8.x) Virtualization

Virtual timer events for Guest/VM using SBI calls 
emulated by hypervisor. The SBI calls trap to 
hypervisor so save/restore of virtual timer state not 
required.

Virtual timer events for Guest/VM using ARM 
generic timers with virtualization support. The 
hypervisor will save/restore virtual timer state and 
manage virtual timer interrupts.

Virtual inter-processor interrupts for Guest/VM 
using SBI calls emulated by hypervisor. The 
hypervisor does not require any special 
save/restore.

Virtual inter-processor interrupts for Guest/VM by 
emulating ICC_SGI1R_EL1 (virtual GICv3) or 
GICD_SGIR (virtual GICv2). The save/restore will be 
handled as part of LR registers save/restore.

Nested virtualization supported using 
HSTATUS.VTVM and HSTATUS.VTSR bits. The 
hypervisor will trap-n-emulate Guest hypervisor 
capabilities.

Special ARMv8.3-NV for supporting nested 
virtualization on ARMv8. The hypervisor will trap-
n-emulate Guest hypervisor capabilities. The 
ARMv8.4-NV further enhances nested virtualization 
support.



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 11

RISC-V H-Extension in QEMU
Emulating RISC-V Hypervisor Extension in QEMU



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 12

Current QEMU Implementation

• Patches on list to add support for v0.4 Virtualisation extension
– Both for 32-bit and 64-bit

– Includes all vs CSRs and support for swapping CSRs

– Interrupts are correctly generated to the Hypervisor, which can then inject them to it’s guests

– Floating point is correctly disabled by the Hypervisor

– Two stage MMU is implemented and fully supported

• The Hypervisor extension is disabled by default
– It can be enabled with: -cpu rv64,x-h=true

– The patches can be found here until they are fully upstream: https://github.com/kvm-riscv/qemu

https://github.com/kvm-riscv/qemu


10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 13

Changes made to QEMU in preparation

• Remove requirement on MIP CSR (pending interrupts) being updated atomically
– Having MIP updated atomically posed a headache for swapping the VSIP and SIP CSRs

• Allow setting ISA extensions via command line
– We need to have Hypervisor extensions disabled by default, and allow users to enable via command line

– QEMU can now enable/disable extensions via command line

• Consolidate floating point enable/disable logic



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 14

Maintaining the Hypervisor State

• The Hypervisor state only changes on traps and returns
– This makes it straight forward to keep track of

• M Mode and HS Mode can pretend to be Virtualised
– This is used to access memory through the 2-stage MMU (to decode fault addresses for example)

– QEMU needs to know when to do this

• Certain faults can not be delegated to the guests
– QEMU needs to know if one of these happen

– This is maintained as part of the virtualisation state (FORCE_HS_EXCEP)



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 15

Two Stage MMU

• Two stages are always enabled when 
virtualisation is on

• Two stages can be turned on even when 
virtualisation is off
– MSTATUS_MPRV in M mode and HSTATUS_SPRV 

and HSTATUS_SPV in HS mode

– This doesn’t apply to instruction fetches, only 
loads/stores

– This requires the translation to use vsatp instead 
of satp (guests page table)

• Second level translation failures must raise 
an exception with the Hypervisor
– They can not be delegated



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 16

Handling Register Swapping in QEMU

• Using pointers to handle M-Mode CSRs that are exposed as S-Mode (mstatus, mie)

• Value swapping the S-Mode only CSRs

• mip CSR (no longer atomically accessed) is value swapped as well

sstatus CSR

vsstatussstatus

V=1V=0

mstatus

*mstatus

mstatus_vir
t

mstatus_no
virt

V=1V=0

sstatus

mstatus_vir
t & mask

mstatus_no
virt & mask

V=1V=0

Hardware
QEMU



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 17

Future Work

• Upstream the current work

• Implement RISC-V H-Extension v0.5 draft

• Update QEMUs TLB caching index's to include Virtualisation state
– Then we can support fine grain TLB flushing from sfence and hfence instructions

• Allow sfence to only flush current virtualization TLBs

• Allow hfence to flush only guest TLBs

– Currently we flush everything on state changes which is slow and incorrect

• Update to the latest version of the spec as it is released

• Add support for nested virtualization

• Get 32-bit Linux guests running



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 18

KVM RISC-V
The RISC-V port of the KVM hypervisor



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 19

KVM RISC-V

• RISC-V H-extension is very well suited for KVM Hypervisor

• Host Linux runs unmodified in HS-mode

• H-extension CSRs only accessed by KVM RISC-V in Host Linux

• Guest Linux runs unmodified in VS-mode

World’s first Type-2 RISC-V hypervisor

Firmware (OpenSBI)

Linux KVM (Host Linux)

Guest Linux

Guest User Space QEMU/KVMTOOLVU

VS

M

Virtualized World Non-virtualized World

HS

U

HS

M

M-mode Software

HS-mode Software

VS-mode Software

VU-mode Software

U-mode SoftwareD
ec

re
as

in
g 

P
ri

vi
le

ge
 L

ev
el



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 20

KVM RISC-V: Key Aspects

• No RISC-V specific KVM IOCTL

• Minimal possible world-switch

• Full save-restore via vcpu_load()/vcpu_put()

• FP lazy save/restore

• KVM ONE_REG interface for user-space

• Timer and IPI emulation in kernel-space

• PLIC emulation is done in user-space

• Hugepage support

• SBI v0.1 interface for Guest

• Unhandled SBI calls forwarded to KVM userspace

What have we achieved so far ?



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 21

KVM RISC-V: SBI Interface

• SBI = Supervisor Binary interface

• SBI v0.1 in-use by Linux kernel
(Refer, https://github.com/riscv/riscv-sbi-doc/blob/v0.1.0/riscv-sbi.md)

• SBI v0.2 in draft stage

Syscall style interface between Host and Guest

Type Function Function ID

Timer sbi_set_timer 0

IPI
sbi_clear_ipi
sbi_send_ipi

3
4

Memory 
Model

sbi_remote_fence_i
sbi_remote_sfence_vma
sbi_remote_sfence_vma_asid

5
6
7

Console
sbi_console_putchar
sbi_console_getchar

1
2

Shutdown sbi_shutdown 8

https://github.com/riscv/riscv-sbi-doc/blob/v0.1.0/riscv-sbi.md


10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 22

KVM RISC-V: RUN LOOP
The runtime loop for KVM RISC-V VCPUs

QEMU/KVMTOOL

ioctl(KVM_RUN)

Exit Handler

KVM RISC-V

kvm_arch_vcpu_ioctl_run()
In-Kernel RUN LOOP

__kvm_riscv_switch_to()

kvm_riscv_vcpu_exit()

Guest Kernel

Guest User Space

Userspace RUN LOOP kvm_arch_vcpu_load()

kvm_arch_vcpu_put()

M-mode Software

HS-mode Software

VS-mode Software

VU-mode Software

U-mode Software

Host-to-Guest

Guest-to-Host • Host Interrupt
• MMIO Trap
• SBI Call
• Stage2 Trap
• …. Others ….

• MMIO Exit
• SBI Call Exit
• …. Others ….



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 23

KVM RISC-V: RUN IOCTL
The In-Kernel RUN LOOP

int kvm_arch_vcpu_ioctl_run(....)
{

int ret = 1;
....
/* Handle MMIO returned from userspace */
....
/* Handle SBI returned from userspace */
....
while (ret > 0) {

....
kvm_riscv_vcpu_flush_interrupts(....);
....
__kvm_riscv_switch_to(....);
....
kvm_riscv_vcpu_sync_interrutps(....);
....
ret = kvm_riscv_vcpu_exit(....);

}
....
return ret;

}

Update VCPU state for MMIO returned from userspace

Update VCPU state for SBI returned from userspace

Update VCPU VSIP CSR for pending VCPU interrupts

Sync-up VSIP CSR changes done by VCPU

KVM RISC-V world switch

Process VCPU traps



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 24

KVM RISC-V: VCPU Interrupts
Multiple producer and single consumer of VCPU interrupts

In-Kernel RUN LOOP
(Consumer)

__kvm_riscv_switch_to()

kvm_riscv_vcpu_flush_interrupts()
Update Guest VCPU VSIP CSR based on 
irqs_pending and irqs_pending_mask

kvm_riscv_vcpu_sync_interrupts()
Sync irqs_pending and irqs_pending_mask

Guest VCPU updates to VSIP CSR

irqs_pending
Atomic bitmap representing current 

state of VCPU interrupts

irqs_pending_mask
Atomic bitmap representing bits 

changed in irq_pending

VCPU Interrupt State

VCPU Timer Expiry
(Producer)

IPI from other VCPUs
(Producer)

KVM_INTERRUPT IOCTL
(Producer)



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 25

KVM RISC-V: World Switch
The KVM world switch between Host and Guest

ENTRY(__kvm_riscv_switch_to)
/* Save Host GPRs (except A0 and T0-T6) */....
/* Save Host SSTATUS, HSTATUS, SSCRATCH and STVEC */....
/* Change Host exception vector to return path */....
/* Restore Guest HSTATUS, SSTATUS and SEPC */....
/* Restore Guest GPRs (except A0) */....
/* Save Host A0 in SSCRATCH */....
/* Resume Guest */
sret

__kvm_switch_return:
/* Swap Guest A0 with SSCRATCH */....
/* Save Guest GPRs (except A0) */....
/* Save Guest A0 */....
/* Save Guest HSTATUS, SSTATUS, and SEPC */....
/* Restore Host SSTATUS, HSTATUS, SSCRATCH and STVEC */....
/* Restore Host GPRs (except A0 and T0-T6) */....
/* Return to C code */
ret

ENDPROC(__kvm_riscv_switch_to)

Host-to-Guest (HS-mode)
• Save 24 GPRs
• Save 4 CSRs
• Restore 3 CSRs
• Restore 31 GPRs

Guest-to-Host (HS-mode)
• Save 31 GPRs
• Save 3 CSRs
• Restore 4 CSRs
• Restore 24 GPRs

In-Guest (VS-mode)
• HS-mode STVEC = __kvm_switch_return
• HS-mode SSCRATCH = VCPU context



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 26

KVM RISC-V: VCPU Context
What things are saved/restored for a VCPU ?

struct kvm_cpu_context

Field Description Save/Restore

zero Zero register ---

ra Return address register World switch

sp Stack pointer register World switch

gp Global pointer register World switch

tp Thread pointer register World switch

a0-a7 Function argument registers World switch

t0-t6 Caller saved registers World switch

s0-s11 Callee saved registers World switch

sepc Program counter World switch

sstatus Shadow SSTATUS CSR World switch

hstatus Shadow HSTATUS CSR World switch

fp All floating-point registers Load/Put

struct kvm_vcpu_csr

Field Description Save/Restore

vsstatus SSTATUS CSR Load/Put

vsie SIE CSR Load/Put

vstvec STVEC CSR Load/Put

vsscratch SSCRATCH CSR Load/Put

vsepc SEPC CSR Load/Put

vscause SCAUSE CSR Load/Put

vstval STVAL CSR Load/Put

vsip SIP CSR Load/Put

vsatp SATP CSR Load/Put



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 27

KVM RISC-V: ONE REG Interface

• Only KVM_GET_ONE_REG and 
KVM_SET_ONE_REG IOCTLs 
available

• Five types of ONE_REG registers: 
CONFIG, CORE, CSR, FP_F and 
FP_D

• “isa” CONFIG register can only be 
written before running the VCPU

• “mode” CORE register has two 
possible values: 1 (S-mode) and 0 
(U-mode)

How can KVM userspace access VCPU context ?

ONE_REG Name Type Width Permission

isa CONFIG 32/64 Read-n-Write-before-running

tbfreq CONFIG 32/64 Read-Only

regs.pc CORE 32/64 Read-Write

regs.ra CORE 32/64 Read-Write

regs.sp CORE 32/64 Read-Write

regs.gp CORE 32/64 Read-Write

regs.tp CORE 32/64 Read-Write

regs.t0 - regs.t6 CORE 32/64 Read-Write

regs.s0 - regs.s11 CORE 32/64 Read-Write

mode CORE 32/64 Read-Write

f[0] - f[31] FP_F 32 Read-Write

fcsr FP_F/FP_D 32 Read-Write

f[0] – f[31] FP_D 64 Read-Write



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 28

KVM RISC-V Status & Future Work
Where are we ? and What next ?



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 29

KVM RISC-V: Patches

• First version of KVM RISC-V series was send-out on July 29th 2019

• Most of the patches are already Reviewed-n-Acked in v6 of KVM RISC-V series

• Recently, we send-out v9 of KVM RISC-V series on October 16th 2019

• KVMTOOL/QEMU upstreaming on-hold until KVM RISC-V is merged in kernel

• Official KVM RISC-V repo on GitHub at:
https://github.com/kvm-riscv/linux.git

• KVM RISC-V wiki at:
https://github.com/kvm-riscv/howto/wiki

• To play with KVM RISC-V on QEMU refer:
https://github.com/kvm-riscv/howto/wiki/KVM-RISCV64-on-QEMU

Where are the patches ?

https://github.com/kvm-riscv/linux.git
https://github.com/kvm-riscv/howto/wiki
https://github.com/kvm-riscv/howto/wiki/KVM-RISCV64-on-QEMU


10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 30

KVM RISC-V: TODO List

• Move to RISC-V H-Extension v0.5 draft

• Get 32-bit KVM working

• Bring-up on real-HW or FPGA

• SBI v0.2 base and replacement extensions support

• SBI v0.2 para-virtualized time accounting extension

• Trace points

• KVM unit test support

• Virtualize vector extensions

• Upstream KVMTOOL changes (blocked on KVM RISC-V kernel patches)

• QEMU KVM support (blocked on KVM RISC-V kernel patches)

What next ?



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 31

KVM RISC-V: TODO List (Contd.)

• In-kernel PLIC emulation

• Guest/VM migration support

• Libvirt support

• Allow 32bit Guest on 64bit Host (Defined in RISC-V spec)

• Allow big-endian Guest on little-endian Host and vice-versa (Defined in RISC-V spec)

• ..... and more .....

What next ?



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 32

KVM RISC-V Demo
KVM RISC-V running on QEMU RISC-V



10/30/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 33

Questions?



© 2019 Western Digital Corporation or its affiliates. All rights reserved. 10/30/2019


