
QEMU™ for Qualcomm® Hexagon™
Automatic Translation of VLIW DSP Instructions to Tiny Code

Niccolò Izzo
rev.ng

L Taylor Simpson
Qualcomm Innovation Center, Inc.

KVM Forum

November 1, 2019

Qualcomm Hexagon is a product of Qualcomm, Technologies, Inc. and/or its subsidiaries.
QEMU is a trademark of Fabrice Bellard.

2

About rev.ng
A Milan-based startup founded 2 years ago

by two researchers from Politecnico di Milano

Key business areas:

• Static and dynamic binary translation

• Compilation and program analysis techniques

• Architecture-independent decompiler (binary to C)

Niccolò Izzo

MSc Computer Science and Engineering (cum laude) – 2017

Pursuing PhD at Politecnico di Milano

Master Thesis on Rowhammer

Maintainer of LineageOS for MicroG

Twitter: @n1zzo Email: nizzo@rev.ng Callsign: IU2KIN

N

https://lineage.microg.org/
https://twitter.com/n1zzo
mailto:nizzo@rev.ng

3

About Qualcomm

Qualcomm invents breakthrough technologies that transform how the world

connects, computes, and communicates. When we connected the phone to the

Internet, the mobile revolution was born. Today, our inventions are the foundation

for life-changing products, experiences, and industries.

L Taylor Simpson

Sr. Director, Engineering

LLVM compiler and tools team

Qualcomm Innovation Center, Inc.

PhD Computer Science – Rice University
tsimpson@quicinc.com

T

mailto:tsimpson@quicinc.com

4

QEMU Hexagon

• Introduction to Hexagon

• Introduction to QEMU

◦ Tiny Code Generator (TCG)

• Challenges

• Automated TCG generation

• Qualcomm approach

• rev.ng approach

• Status and next steps

• Conclusion

Overview

T

5

Introduction to
Hexagon

6

Introduction to Hexagon
Very Long Instruction Word Digital Signal Processor (VLIW DSP)

{ R17:16 = MEMD(R0++M1)

MEMD(R6++M1) = R25:24

R20 = CMPY(R20, R8):<<1:rnd:sat

R11:10 = VADDH(R11:10, R13:12)

}:endloop0

Complex multiply with

round and saturation

Vector 4x16-bit Add

64-bit Load and

Zero-overhead loops
•Dec count
• Compare
• Jump top

64-bit Store with
post-update
addressing

Example from inner loop of FFT: Executing 29 “simple RISC ops” in 1 cycle

Rs

Add

I R

Rt

*

32

<<0-1

*

32

<<0-1

Rd

I R

Add

I R

*

32

<<0-1

*

32

<<0-1

I R

Rs

Rt

-
0x80000x8000

Sat_32 Sat_32

High 16bitsHigh 16bits

I R

+ + + +

T

7

Introduction to
QEMU

8

• qemu.org

◦ Generic and open source machine emulator and virtualizer

◦ Code translation drives fast off-target simulation

• Operating modes

◦ User mode

◦ System mode

◦ Virtualization

• Trace-based translator

◦ Unit of translation is a translation block

◦ Target instructions are translated to TCG ops

◦ TCG ops are then transformed into host instructions

◦ Translate once, execute many times

Introduction to QEMU

QEMU logo is licensed under the Creative Commons license
http://creativecommons.org/licenses/by/3.0/

N

http://www.qemu.org/

9

Introduction to QEMU

• TCG operators tcg_gen_<op>[i]_<size>
<op> is the operation (e.g., add)

[i] indicates immediate instead of register (e.g., addi)

<size> is the size of TCG registers (usually use tl shorthand)

Example: tcg_gen_add_tl

• From x86 assembly instruction to tiny code instructions

Tiny Code Generator (TCG)

sub_i32 tmp0 ,esp , $0x4
qemu_st_i32 $0x1005 ,tmp0 ,leul ,0
mov_i32 esp , tmp0
movi_i32 eip , $0x2000

0x1000: call 0 x2000
0x1005:

N

10

Introduction to QEMU

• Goal: Create qemu-hexagon

• Translate binary Hexagon packets to TCG

{ R17:16 = MEMD(R0++M1)
MEMD(R6++M1) = R25:24
R20 = CMPY(R20, R8):<<1:rnd:sat
R11:10 = VADDH(R11:10, R13:12)

}:endloop0

TCG

N

11

Challenges

12

Challenges

• Packet semantics

T

◦ Behavior is NOT the same as executing instructions sequentially
{ r0 = r1; r1 = r0 } // Swap r0 and r1

◦ Dual jumps → Only one is executed
{ if (p0) jump:nt <foo>; jump <bar> }

◦ Dual stores → Stores are serialized
{ memw(r3+#0) = r5; memb(r3+#0) = r4 }

◦ .new
{ if (!p0.new) r0=#13; p0=cmp.eq(r0,#4) }

◦ Precise interrupts and exceptions → All instructions commit or none commit

• Over 2,000 user mode instructions!

◦ Multiple predicate definitions → and them together
{ p0=cmp.eq(r0,r1); p0=cmp.eq(r2,r3) }

13

Challenges

QEMU executes tiny code instructions in sequential order

To preserve semantics, we have to

• Reorder instructions to solve dependencies

• Use temporary register set for .new accesses

• Commit at the end of packet to actual registers

• Commit only if no exception occur

Implementation

T

14

Automated
Instruction
Generation
QTI approach

15

QEMU “helper”
◦ QEMU uses “helpers” to call function from TCG

◦ Each helper has 3 parts

◦ Generated via Python

Hexagon Instruction
Tag: A2_add
Semantics: "{RdV=RsV+RtV;}"

Prototype
DEF_HELPER_3(A2_add, s32, env, s32, s32)

Implementation
int32_t HELPER(A2_add)(CPUHexagonState *env, int32_t RsV, int32_t RtV)
{

uint32_t slot = 4; slot = slot;
int32_t RdV = 0;
{ RdV=RsV+RtV;}
return RdV;

}

Generate call
{

DECL_RREG_d(TCGv, RdV, RdN, 0, 0);
DECL_RREG_s(TCGv, RsV, RsN, 1, 0);
DECL_RREG_t(TCGv, RtV, RtN, 2, 0);
READ_RREG_s(RsV, RsN);
READ_RREG_t(RtV, RtN);
fWRAP_A2_add(gen_helper_A2_add(RdV, cpu_env, RsV, RtV);,

{ RdV=RsV+RtV;})
WRITE_RREG(RdN,RdV);
FREE_REG_d(RdV);
FREE_REG_s(RsV);
FREE_REG_t(RtV);

}

T

16

QEMU “helper”

Generate
{

DECL_RREG_d(TCGv, RdV, RdN, 0, 0);
DECL_RREG_s(TCGv, RsV, RsN, 1, 0);
DECL_RREG_t(TCGv, RtV, RtN, 2, 0);
READ_RREG_s(RsV, RsN);
READ_RREG_t(RtV, RtN);
fWRAP_A2_add(gen_helper_A2_add(RdV, cpu_env, RsV, RtV);,

{ RdV=RsV+RtV;})
WRITE_RREG(RdN,RdV);
FREE_REG_d(RdV);
FREE_REG_s(RsV);
FREE_REG_t(RtV);

}

◦ Advantage

◦ Very quickly implement all instructions

◦ Same semantics as hexagon-sim

◦ Disadvantages

◦ Function call overhead

◦ Barrier to TCG optimization

Override
#define fWRAP_A2_add(GENHLPR, SHORTCODE) \

tcg_gen_add_tl(RdV, RsV, RtV);

T

17

Automated
Instruction
Generation
rev.ng approach

18

Automated TCG Generation

Hexagon instructions are described in the docs with C-like snippets, e.g.:

Rx+=sub(Rt,Rs) Rx=Rx + (Rt - Rs);

Can we translate these snippets into QEMU TCG generation code?

N

Assembly syntax Pseudo-code

19

Automated TCG Generation

Hexagon instructions are described in the docs with C-like snippets, e.g.:

Rx+=sub(Rt,Rs) Rx=Rx + (Rt - Rs);

Can we translate these snippets into QEMU TCG generation code?

We used flex + bison to achieve exactly that

N

Assembly syntax Pseudo-code

20

Automated TCG Generation

regs_t function_536(DisasContext * dc ,
uint32_t x,
uint32_t t,
uint32_t s) {

regs_t regs = { 0 };
TCGv_i32 tmp_0 = tcg_temp_new_i32 ();
tcg_gen_sub_i32(tmp_0 , GPR[t], GPR[s]);
TCGv_i32 tmp_1 = tcg_temp_new_i32 ();
tcg_gen_add_i32(tmp_1 , GPR[x], tmp_0);
tcg_temp_free_i32(tmp_0);
tcg_gen_mov_tl(GPR_new[x], tmp_1);
SET_USED_REG(regs , x);
tcg_temp_free_i32(tmp_1);
return regs;

}

flex-bison syntax tree TCG generation function

N

Rx=Rx + (Rt - Rs);

21

Automated TCG Generation

Two CSV are extracted from

the ISA manual containing the

instruction encodings and

semantic descriptions

N

22

Automated TCG Generation

Two CSV are extracted from

the ISA manual containing the

instruction encodings and

semantic descriptions

An optimized decoder tree

is generated from the encodings

N

23

Automated TCG Generation

Two CSV are extracted from

the ISA manual containing the

instruction encodings and

semantic descriptions

An optimized decoder tree

is generated from the encodings

The pseudocode snippets are

fed into a flex-bison generated

parser

N

24

Automated TCG Generation

Two CSV are extracted from

the ISA manual containing the

instruction encodings and

semantic descriptions

An optimized decoder tree

is generated from the encodings

The pseudocode snippets are

fed into a flex-bison generated

parser

The resulting functions are used

to generate a source and header file,

which are compiled into QEMU
N

25

Status and
Limitations

26

Status

• Up to 28X faster than hexagon-sim

• Linux user space completed

• Angel/semi-hosting

• Extensively tested

• Code available

◦ rev.ng implementation https://github.com/revng/qemu-hexagon

◦ Qualcomm implementation https://github.com/quic/qemu

N

https://github.com/revng/qemu-hexagon
https://github.com/quic/qemu

27

Next Steps

◦ Short term
◦ Merge rev.ng and QTI implementations

◦ Community review

◦ Merge upstream

◦ Long term
◦ Tighter integration with Hexagon LLVM

◦ System mode

◦ Debug Hexagon programs with LLVM debugger (LLDB)

T

28

Demo &
Conclusion

29

Conclusion

• VLIW semantics create interesting challenges

• Large number of instructions requires automated generation

• Code generator can be useful for adding support for new complex architectures

• Hexagon programs execute up to 28X faster on QEMU than current simulator

T

Nothing in these materials is an offer to sell any of the

components or devices referenced herein.

©2018-2019 Qualcomm Technologies, Inc. and/or its affiliated

companies. All Rights Reserved.

Qualcomm and Hexagon are trademarks of Qualcomm

Incorporated, registered in the United States and other

countries. Other products and brand names may be

trademarks or registered trademarks of their respective

owners.

References in this presentation to “Qualcomm” may mean Qualcomm

Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries

or business units within the Qualcomm corporate structure, as

applicable. Qualcomm Incorporated includes Qualcomm’s licensing

business, QTL, and the vast majority of its patent portfolio. Qualcomm

Technologies, Inc., a wholly-owned subsidiary of Qualcomm

Incorporated, operates, along with its subsidiaries, substantially all of

Qualcomm’s engineering, research and development functions, and

substantially all of its product and services businesses, including its

semiconductor business, QCT.

Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Thank you!

