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Ever heard about Rust?
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Ever actually used Rust?
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Rust Ownership

Memory safety

Safe and simple concurrency

No garbage collector
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Rust and VMMs: Why?
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VMM Components/Requirements Rust Features

Memory model, virtio, etc Memory Safety

vCPU threads, I/O workers Safe Concurrency

Virtualization overhead
Latency

Performance
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rust-vmm
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What is rust-vmm?

- Building blocks for VMMs written in Rust
- Virtualization components (crates)
- Open Source
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Why rust-vmm?

- Faster development for new custom VMMs
- Security & Testability
- Clean interface
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vm-memory - Firecracker

- Guest Address
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vm-memory - Firecracker

- Guest Address
- Memory Region
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mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous
Shared Mem



vm-memory - Firecracker

- struct Guest Address
- struct Memory Region
- struct Guest Memory
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mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous
Shared Mem

mem-region mem-region mem-region mem-region

Guest Memory



vm-memory - Firecracker

- struct Guest Address
- struct Memory Region
- struct Guest Memory
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vm-memory - rust-vmm

- Trait Guest Address
- Trait Memory Region
- Trait Guest Memory

mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous
Shared Mem

mem-region mem-region mem-region mem-region

Guest Memory



What is a trait?

- “A trait is a collection of methods defined for an 
unknown type: Self”

- Interface
- Methods with default implementation

14



vm-memory - Firecracker

- struct Guest Address
- struct Memory Region
- struct Guest Memory
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vm-memory - rust-vmm

- trait Guest Address
- trait Memory Region
- trait Guest Memory

mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous
Shared Mem

mem-region mem-region mem-region mem-region

Guest Memory

mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous/File
Shared Mem



Component Dependency

vm-memory
pub trait GuestMemory {

   fn read_from<F>(...);

   …

}

pub struct GuestMemoryMmap {

   regions: Arc<Vec<GuestRegionMmap>>,

}

impl GuestMemory for GuestMemoryMmap {

  fn read_from<F>(...) { … }

}
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linux-loader
fn load<F, M: GuestMemory>(

guest_mem: &M,

kernel_image: &mut F,

highmem_start_address: GuestAddress,

)



From idea to published crate
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Idea GitHub Issue

Design

Design Discussions

github/rust-vmm/community

Pull Requests

Continuous Integration

Crate in 
Dev

Tests
Documentation

License

Empty 
Crate

Milestone 0

Crate
in Dev

Milestone 1

Publish
crates.io

Milestone 2

Crate = Package

crates.io = 
Rust Crate 
Registry



Current Status
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Empty 
Crate

Milestone 0

Crate
in Dev

Milestone 1

Publish
crates.io

Milestone 2

kvm-bindings

kvm-ioctls

vm-memory

vhost

linux-loader

vm-device

vm-virtio

vmm-sys-util

vm-allocator

vfio-bindings virtio-bindings



rust-vmm in practice
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Contribute

Alibaba

AWS (Firecracker)

CloudBase

Google (CrosVM)

Intel (Cloud Hypervisor)

Red Hat
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Contribute and Consume

AWS (Firecracker)

Intel (Cloud Hypervisor)
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How do you build a VMM from rust-vmm?
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How do you build a VMM from rust-vmm?

Cherry-pick your features
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How do you build a VMM from rust-vmm?

Cherry-pick your features

Use functional rust-vmm crates (crates.io or github deps)
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How do you build a VMM from rust-vmm?
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Use functional rust-vmm crates (crates.io or github deps)
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Implement missing rust-vmm crates
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How do you build a VMM from rust-vmm?

Cherry-pick your features

Use functional rust-vmm crates (crates.io or github deps)

Fork incomplete rust-vmm crates

Implement missing rust-vmm crates

Implement the VMM glue code
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KVM
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KVM

linux-loader
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vm-memory vm-device vm-virtio

PCI vfio kvm

PCI



KVM

linux-loader

VMM Glue Code
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vm-memory vm-device vm-virtio

PCI vfio kvm

PCI
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VMM
KVM

linux-loader

VMM Glue Code
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vm-memory vm-device vm-virtio

PCI vfio kvm

PCI



VMM
KVM

linux-loader

VMM Glue Code
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vm-memory vm-device vm-virtio

kvm

MMIO



Cloud Hypervisor
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Cloud Hypervisor VMM
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Cloud Hypervisor VMM

KVM only
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Cloud Hypervisor VMM

KVM only

Cloud workloads
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Cloud Hypervisor VMM

KVM only

Cloud workloads

x86_64 and aarch64
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Cloud Hypervisor VMM

KVM only

Cloud workloads

x86_64 and aarch64

PCI based, VFIO, ACPI, Migration, vhost-user

40



rust-vmm crates

All functional rust-vmm crates
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rust-vmm crates

All functional rust-vmm crates

Bindings (KVM, virtio, VFIO)

KVM (kvm-ioctls)

Memory model (vm-memory)

Kernel loader (linux-loader)

Utilities (vmm-sys-util)
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Fork WIP crates

vm-virtio

vm-device

VFIO
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Implement missing crates

PCI

qcow

migration

arch
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Reality Check

Still 40K Lines of Code

Fundamental crates missing from rust-vmm
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Actions from the rust-vmm meetup

vm-device

vm-virtio



https://github.com/rust-vmm/
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https://github.com/rust-vmm/


Backup
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fn make_vec() -> Vec<i32> {
    let mut vec = Vec::new();
    vec.push(42);
    vec
}
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fn make_vec() -> Vec<i32> {
    let mut vec = Vec::new();
    vec.push(42);
    vec
}

fn print_vec(vec: Vec<i32>) {
    for i in vec.iter() {
        println!("{}", i)
    }
}
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