
Playing Lego with Virtualization
Components

Andreea Florescu
fandree@amazon.com

Samuel Ortiz
samuel.ortiz@intel.com

Ever heard about Rust?

2

Ever actually used Rust?

3

Rust Ownership

Memory safety

Safe and simple concurrency

No garbage collector

4

Rust and VMMs: Why?

5

VMM Components/Requirements Rust Features

Memory model, virtio, etc Memory Safety

vCPU threads, I/O workers Safe Concurrency

Virtualization overhead
Latency

Performance

6

rust-vmm

7

What is rust-vmm?

- Building blocks for VMMs written in Rust
- Virtualization components (crates)
- Open Source

8

Why rust-vmm?

- Faster development for new custom VMMs
- Security & Testability
- Clean interface

9

vm-memory - Firecracker

- Guest Address

10

vm-memory - Firecracker

- Guest Address
- Memory Region

11

mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous
Shared Mem

vm-memory - Firecracker

- struct Guest Address
- struct Memory Region
- struct Guest Memory

12

mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous
Shared Mem

mem-region mem-region mem-region mem-region

Guest Memory

vm-memory - Firecracker

- struct Guest Address
- struct Memory Region
- struct Guest Memory

13

vm-memory - rust-vmm

- Trait Guest Address
- Trait Memory Region
- Trait Guest Memory

mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous
Shared Mem

mem-region mem-region mem-region mem-region

Guest Memory

What is a trait?

- “A trait is a collection of methods defined for an
unknown type: Self”

- Interface
- Methods with default implementation

14

vm-memory - Firecracker

- struct Guest Address
- struct Memory Region
- struct Guest Memory

15

vm-memory - rust-vmm

- trait Guest Address
- trait Memory Region
- trait Guest Memory

mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous
Shared Mem

mem-region mem-region mem-region mem-region

Guest Memory

mem-region

Start addr
(GuestAddress)

End addr
(GuestAddress)

Anonymous/File
Shared Mem

Component Dependency

vm-memory
pub trait GuestMemory {

 fn read_from<F>(...);

 …

}

pub struct GuestMemoryMmap {

 regions: Arc<Vec<GuestRegionMmap>>,

}

impl GuestMemory for GuestMemoryMmap {

 fn read_from<F>(...) { … }

}
16

linux-loader
fn load<F, M: GuestMemory>(

guest_mem: &M,

kernel_image: &mut F,

highmem_start_address: GuestAddress,

)

From idea to published crate

17

Idea GitHub Issue

Design

Design Discussions

github/rust-vmm/community

Pull Requests

Continuous Integration

Crate in
Dev

Tests
Documentation

License

Empty
Crate

Milestone 0

Crate
in Dev

Milestone 1

Publish
crates.io

Milestone 2

Crate = Package

crates.io =
Rust Crate
Registry

Current Status

18

Empty
Crate

Milestone 0

Crate
in Dev

Milestone 1

Publish
crates.io

Milestone 2

kvm-bindings

kvm-ioctls

vm-memory

vhost

linux-loader

vm-device

vm-virtio

vmm-sys-util

vm-allocator

vfio-bindings virtio-bindings

rust-vmm in practice

19

Contribute

Alibaba

AWS (Firecracker)

CloudBase

Google (CrosVM)

Intel (Cloud Hypervisor)

Red Hat

20

Contribute and Consume

AWS (Firecracker)

Intel (Cloud Hypervisor)

21

How do you build a VMM from rust-vmm?

22

How do you build a VMM from rust-vmm?

Cherry-pick your features

23

How do you build a VMM from rust-vmm?

Cherry-pick your features

Use functional rust-vmm crates (crates.io or github deps)

24

How do you build a VMM from rust-vmm?

Cherry-pick your features

Use functional rust-vmm crates (crates.io or github deps)

Fork incomplete rust-vmm crates

25

How do you build a VMM from rust-vmm?

Cherry-pick your features

Use functional rust-vmm crates (crates.io or github deps)

Fork incomplete rust-vmm crates

Implement missing rust-vmm crates

26

How do you build a VMM from rust-vmm?

Cherry-pick your features

Use functional rust-vmm crates (crates.io or github deps)

Fork incomplete rust-vmm crates

Implement missing rust-vmm crates

Implement the VMM glue code

27

KVM

28

KVM

linux-loader

29

vm-memory vm-device vm-virtio

PCI vfio kvm

PCI

KVM

linux-loader

VMM Glue Code

30

vm-memory vm-device vm-virtio

PCI vfio kvm

PCI

31

32

VMM
KVM

linux-loader

VMM Glue Code

33

vm-memory vm-device vm-virtio

PCI vfio kvm

PCI

VMM
KVM

linux-loader

VMM Glue Code

34

vm-memory vm-device vm-virtio

kvm

MMIO

Cloud Hypervisor

35

Cloud Hypervisor VMM

36

Cloud Hypervisor VMM

KVM only

37

Cloud Hypervisor VMM

KVM only

Cloud workloads

38

Cloud Hypervisor VMM

KVM only

Cloud workloads

x86_64 and aarch64

39

Cloud Hypervisor VMM

KVM only

Cloud workloads

x86_64 and aarch64

PCI based, VFIO, ACPI, Migration, vhost-user

40

rust-vmm crates

All functional rust-vmm crates

41

rust-vmm crates

All functional rust-vmm crates

Bindings (KVM, virtio, VFIO)

KVM (kvm-ioctls)

Memory model (vm-memory)

Kernel loader (linux-loader)

Utilities (vmm-sys-util)

42

Fork WIP crates

vm-virtio

vm-device

VFIO

43

Implement missing crates

PCI

qcow

migration

arch

44

45

Reality Check

Still 40K Lines of Code

Fundamental crates missing from rust-vmm

46

47

48

Actions from the rust-vmm meetup

vm-device

vm-virtio

https://github.com/rust-vmm/

49

https://github.com/rust-vmm/

Backup

50

fn make_vec() -> Vec<i32> {
 let mut vec = Vec::new();
 vec.push(42);
 vec
}

51

fn make_vec() -> Vec<i32> {
 let mut vec = Vec::new();
 vec.push(42);
 vec
}

fn print_vec(vec: Vec<i32>) {
 for i in vec.iter() {
 println!("{}", i)
 }
}

52

fn make_vec() -> Vec<i32> {
 let mut vec = Vec::new();
 vec.push(42);
 vec
}

fn print_vec(vec: Vec<i32>) {
 for i in vec.iter() {
 println!("{}", i)
 }
}

fn main() {
 let vec = make_vec();
 print_vec(vec);
}

53

fn make_vec() -> Vec<i32> {
 let mut vec = Vec::new();
 vec.push(42);
 vec
}

fn print_vec(vec: Vec<i32>) {
 for i in vec.iter() {
 println!("{}", i)
 }
}

fn main() {
 let vec = make_vec();
 print_vec(vec);
}

54

fn make_vec() -> Vec<i32> {
 let mut vec = Vec::new();
 vec.push(42);
 vec
}

fn print_vec(vec: Vec<i32>) {
 for i in vec.iter() {
 println!("{}", i)
 }
}

fn main() {
 let vec = make_vec();
 print_vec(vec);
 println!("Vector length: {}", vec.len());
}

55

fn make_vec() -> Vec<i32> {
 let mut vec = Vec::new();
 vec.push(42);
 vec
}

fn print_vec(vec: Vec<i32>) {
 for i in vec.iter() {
 println!("{}", i)
 }
}

fn main() {
 let vec = make_vec();
 print_vec(vec);
 println!("Vector length: {}", vec.len());
}

56

