Google

KVM x86 MMU:
Improvements to the TDP Direct Case

Ben Gardon (bgardon@google.com)

KVM Forum 2019 1

Background

Google

VMs are getting larger

Live migration needed for host
maintenance, software upgrades
Latency sensitive workloads
must migrate under load

Many vCPUs + memory = hard to migrate

GCE Machine Type | vCPUs | RAM
m1-ultramem-160 160 3.8TiB
m2-ultramem-416 416 11.5TiB

Demand paging

e Last stage of live migration
e Memory transfer initiated by vCPU page faults
e UserFault FD

o Guest page fault -> Host page fault
o User fault FD thread copies memory
o Page fault(s) fixed

o Guestresumes

Google

Sizing up the problem

e KVM selftests demand_paging_test
e User fault FD demand paging micro benchmark
e Simulates minimal overheads + perfect userspace tuning

UFFD UFFD UFFD UFFD
Thread Thread Thread Thread

Google

Performance Improvements - Results

./demand_paging_test -v 416 -b S((4 << 30)) # 4GiB per vCPU

perf kvm --host --guest record --all-cpus -g -- sleep 1

- 98.72% vmx_handle_exit
- 98.72% handle_ept_violation
- 98.72% kvm_mmu_page_fault
- 98.72% tdp_page_fault
- 98.11% queued_spin_lock_slowpath

Eliminating MMU lock contention will speed demand paging 90%

Google

MMU lock contention

Google

EPT violations acquire the KVYM MMU Lock
Concurrent page faults cause lock contention
Contention increases exit latency
Applications become unresponsive

Long page faults induce soft lockups

Must parallelize page faults

Why parallel page faults?

Google

Not all users of KVM use demand paging

Other operations cause high PF rate (e.g. disabling dirty logging)
Lock contention a fundamental MMU scaling issue

Parallel PF handling -> other parallel operations

Existing shadow paging difficult to parallelize

Build a scalable MMU for non-nested TDP

Data structure problem + hardware concerns

KVM MMU Background

e Data structure problem + hardware concerns

e Translate guest addresses to host addresses
o Must map GPA -> HPA

e Two major features:

o Interoperation w/ memory management subsystem

o Handle vCPU page faults

Google

Guest address translation - TDP direct

e Non-nested guest with Two Dimensional Paging (direct)
e Guest controls CR3 (GVA->GPA), Host controls EPT (GPA->HPA)
e Propagate memslot / host PT changes to EPT

.+_§_*

Guest PTs Memslots Host PTs EPT
Google 9

MMU notifiers

Communication channel between MM subsystem and secondary MMUs (KVM)

Secondary MMUs program hardware to map physical memory

Google

invalidate_range_start
invalidate_range_end

Free backing physical memory,
Must sync w/ PF handler

change_pte

Host PTE changed

clear_young
clear_flush_young
test_young

Check if a page has been
accessed, optionally clear
accessed status / flush TLBS

10

mmu_notifier_invalidate_range

e Main MM must remap some memory

Physical Memory

Google

L4

L3

L2

L1

11

mmu_notifier_invalidate_range

e Main MM must remap some memory -4
e invalidate_range_start

o Prevent access to arange of memory L3

L2

L1

Physical Memory

Google 12

mmu_notifier_invalidate_range

e Main MM must remap some memory -
e invalidate_range_start
o Prevent access to a range of memory L3
e Memory is remapped
L2

L1

Physical Memory

Google 13

mmu_notifier_invalidate_range

Google

Main MM must remap some memory

invalidate_range_start
o Prevent access to a range of memory

Memory is remapped

invalidate_range_end
o Allow mapping the range

Page faults must not run concurrently

w/ notifier

Physical Memory

L4

L3

L2

L1

14

Parallel Page Fault Handling - Requirements

Google

Concurrently access + safely free page table memory
Concurrent PTE modifications + track changes
Interoperate with MMU notifiers

Prevent vCPU access to remapped memory

Prevent vCPU address translation through freed memory

15

Parallel Page Fault Handling - Requirements

Google

Concurrently access + safely free page table memory
Concurrent PTE modifications + track changes
Interoperate with MMU notifiers

Prevent vCPU access to remapped memory

Prevent vCPU address translation through freed memory

16

Walking paging structures

e direct_walk_iterator
e Preorder traversal of paging structure

e Common pattern for MMU operations

o Setup traversal range
o Modify PTEs

o Cleanup, sync caches

e Transparently handles synchronization

Google

17

Why use direct_walk_iterator

e TDP direct -> one paging structure
e Direct paging structure traversal parallelizes well

e No reverse map

o Only allocated for nested virtualization

o ~8bytes/ 4k guest memory
e Nostruct kvm_mmu_page

o direct_walk_iterator tracks metadata
o ~170 bytes / page of PTEs

e 0.2% of guest memory saved = 24GiB for 12T VM

Google 18

Freeing and Accessing Page Table Memory

Google

Must prevent KVM access to freed memory
direct_walk_iterator holds RCU read lock

Free page table memory after:

o Disconnect

o RCU grace period / callback

direct_walk_iterator transparently handles:

o Acquiring RCU lock, RCU derefences

o Restarting traversal after yielding

19

Parallel Page Fault Handling - Requirements

Google

Concurrently access + safely free page table memory
Concurrent PTE modifications + track changes
Interoperate with MMU notifiers

Prevent vCPU access to remapped memory

Prevent vCPU address translation through freed memory

20

Atomic Operations

e Atomic cmpxchg for all PTE modifications

e On success:

o Bookkeeping handled by direct_walk_iterator

o Based on level, guest address, previous value, new value
e On failure:

o Other thread makes progress

o Transparent retry handled by direct_walk_iterator

Google

21

Parallel Page Fault Handling - Requirements

e Concurrently access + safely free page table memory
e Concurrent PTE modifications + track changes

e Interoperate with MMU notifiers

e Prevent bad vCPU cache state

e Prevent vCPU address translation through freed memory

Google

22

Interoperation - MMU lock

e Need parallel page faults
e Other operations need exclusive access
o e.g. MMU notifiers
o e.g.Interop w/ shadow paging for nested

e MMU spinlock -> MMU reader / writer lock

Google

MMU notifiers,
other operations

Page Faults

23

Parallel Page Fault Handling - Requirements

Google

Concurrently access + safely free page table memory
Concurrent PTE modifications + track changes
Interoperate with MMU notifiers

Prevent vCPU access to remapped memory

Prevent vCPU address translation through freed memory

24

Translation Lookaside Buffer (TLB)

TLB L4

e Cache complete translation
0x123456789a_ _ _ _

o e.g. GVA->HPA, HVA->HPA
e TLB Flush

o kvm_flush_remote_tlbs

o Clears TLBs

L3

L2
o Synchronizes caches with

in-memory state
L1

Host Memory

Google

25

Preventing improper guest access

e Problem

o TLB flushes are slow

o Frequent TLB flushes degrade guest TLB performance
e Solution
o Flush TLBs after clearing PTEs
e Avoid flushing TLBs in page fault handler and other operations

Google

26

Google

MMU function memory vCPU EPT MM
<1. cache GVA->HPA
2. clear PTE mapping >
3. invalidate_range_start:
clear entries for GPA
«
4. no present entries,
no TLB flush needed
5. Remap HPA
 —
<§. access HPA via TLB
MMU function memory vCPU EPT MM

27

MMU function

:|3. t1bs_dirty++

MMU function

Google

memory vCPU EPT MM
<1. cache GVA->HPA
2. clear PTE mapping .
4. invalidate_range_start:
clear entries for GPA
<
5. tlbs dirty > 0
6. flush TLB
-«
7. Remap HPA
<
8. access to GVA
results in
EPT violation
memory vCPU EPT MM

28

Deferring TLB Flushes

e Increment TLBs dirty counter when changing PTEs
o Handledby direct_walk_iterator

e Skip flush if guest sync not needed
o E.g. page fault handler

e If sync needed, flush on PTEs or TLBs dirty
o E.g. MMU notifiers

Google

29

Parallel Page Fault Handling - Requirements

Google

Concurrently access + safely free page table memory
Concurrent PTE modifications + track changes
Interoperate with MMU notifiers

Prevent vCPU access to remapped memory

Prevent vCPU address translation through freed memory

30

Paging Structure Caches

Paging Structure Cache L4

e Cache partial walks
0x1234567

o e.g. High 27 bits of GPA ->
EPT level 1 page

e VCPUs can access
disconnected PT memory
e TLB Flush L2

o kvm_flush_remote_tlbs

o Clears TLBs

o Clears paging structure
caches

o Synchronizes caches w/
in-memory state

L3

L1

Host Memory

Google 31

Google

vCPU memory EPT PF handler
1. partial walk for GPA,
cache pointer to PT
<
2. clear PTE,
disconnect PT
<
:]3. free page
4. access to GPA + page size
uses cached partial walk,
translates through freed PT
5. access random HPA R
vCPU memory EPT PF handler

32

TLB Flushes and Freeing Page Table Memory

Two prerequisites to free page table memory:
RCU grace period

TLB flush

Google

33

vCPU

memory

EPT

PF handler

disconnected
list

1. partial walk for GPA,
cache pointer to PT

4.
translates through freed page

access to GPA + page_size

vCPU page fault

6.

uses in-memory page tables

access to GPA + page_size

vCPU

Google

2.
disconnect PT

clear PTE,

<
«

3. fill page w/
non-present PTEs

»
»

free
list

5. flush TLBS‘

memory

EPT

PF handler

disconnected
list

RCU
callback

7. Tasklet queues
RCU callback
free RCU
list callback

:]8. free page

34

Improvements

e Simplified access pattern
o Reduced maintenance burden, harder to forget to free/flush/update
e Memory savings
o Improves efficiency, reduces overheads
e Parallel page faults
o Improves live migration performance, reduces guest jitter and soft lockups

e Reduced / deferred TLB flushes

o Improves MMU performance and guest TLB performance

Google

35

Demand paging duration with N vCPUs (4GiB/vCPU)

Demand Paging Duration (Sec)

8000

6000

4000

2000

== Parallel Page Faults

== \onolithic Lock

100

200

vCPUs

300

400

36

Integration

e These are a lot of changes to the way the MMU works
e The best way to integrate is an open question

e Replacement

o Extend the iterator pattern for x86 and nested shadow paging
o Replace the whole KYM MMU

e Modularization

o Formalize the MMU interface
o Splitthe TDP MMU and x86 shadow MMU

Google

37

Viewing the RFC

KVM mailing list Gerrit

https://linux-review.googlesource.com/c/virt/kvm/kvm/+/1416
https://www.spinics.net/lists/kvm/msg196464.html

Parallel Page Fault Handling - Where are the costs now?

- 78.74% kvm_vcpu_ioctl
- 78.74% kvm_arch_vcpu_ioctl_run
- 78.72% vmx_handle_exit
- handle_ept_violation
- 78.72% kvm_mmu_page_fault
- 78.72% tdp_page_fault
- 64.44% try_async_pf
- 64.44% __gfn_to_pfn_memslot
- 49.76% get_user_pages_unlocked
+ 41.43% down_read
- 8.32% __get_user_pages
- 8.29% handle_mm_fault
- 8.29% __handle_mm_fault
- 8.29% handle_userfault
+ 8.27% schedule
+ 14.67% down_read
- 14.25% mapping_level
- 14.25% kvm_host_page_size
+ 14.24% down_read

- 13.53% userfaultfd_ioctl
- 13.36% mcopy_atomic
- 13.33% down_read
- 13.32% call_rwsem_down_read_failed
- 13.31% rwsem_down_read_failed
- 13.31% _raw_spin_lock_irq
queued_spin_lock_slowpath

TL;DR There's still contention, but less, in more places, and it's not in KVM anymore

Google

39

Reducing TLB Flushes - Why are we clearing PTEs?

e Optimization: demand page at 4k, back memory w/ large pages

Google

40

Reducing TLB Flushes - Why are we clearing PTEs?

e Optimization: demand page at 4k, back memory w/ large pages

Google

41

Reducing TLB Flushes - Why are we clearing PTEs?

e Optimization: demand page at 4k, back memory w/ large pages

Google

42

Reducing TLB Flushes - Why are we clearing PTEs?

e Optimization: demand page at 4k, back memory w/ large pages

Google

43

