
KVM x86 MMU:
Improvements to the TDP Direct Case
Ben Gardon (bgardon@google.com)

1KVM Forum 2019

Background

● VMs are getting larger

● Live migration needed for host

maintenance, software upgrades

● Latency sensitive workloads

must migrate under load

● Many vCPUs + memory = hard to migrate

GCE Machine Type vCPUs RAM

m1-ultramem-160 160 3.8 TiB

m2-ultramem-416 416 11.5 TiB

2

Demand paging

● Last stage of live migration

● Memory transfer initiated by vCPU page faults

● User Fault FD
○ Guest page fault -> Host page fault

○ User fault FD thread copies memory

○ Page fault(s) fixed

○ Guest resumes

3

UFFD
Thread

Sizing up the problem

● KVM selftests demand_paging_test
● User fault FD demand paging micro benchmark
● Simulates minimal overheads + perfect userspace tuning

4

Guest memory

vCPUvCPU vCPU vCPU

UFFD
Thread

UFFD
Thread

UFFD
Thread

Performance Improvements - Results

./demand_paging_test -v 416 -b $((4 << 30)) # 4GiB per vCPU

perf kvm --host --guest record --all-cpus -g -- sleep 1

- 98.72% vmx_handle_exit
- 98.72% handle_ept_violation

- 98.72% kvm_mmu_page_fault
- 98.72% tdp_page_fault

- 98.11% queued_spin_lock_slowpath

Eliminating MMU lock contention will speed demand paging 90%

5

MMU lock contention

● EPT violations acquire the KVM MMU Lock

● Concurrent page faults cause lock contention

● Contention increases exit latency

● Applications become unresponsive

● Long page faults induce soft lockups

● Must parallelize page faults

6

Why parallel page faults?

● Not all users of KVM use demand paging

● Other operations cause high PF rate (e.g. disabling dirty logging)

● Lock contention a fundamental MMU scaling issue

● Parallel PF handling -> other parallel operations

● Existing shadow paging difficult to parallelize

● Build a scalable MMU for non-nested TDP

● Data structure problem + hardware concerns

7

KVM MMU Background

● Data structure problem + hardware concerns

● Translate guest addresses to host addresses
○ Must map GPA -> HPA

● Two major features:
○ Interoperation w/ memory management subsystem

○ Handle vCPU page faults

8

Guest address translation - TDP direct

● Non-nested guest with Two Dimensional Paging (direct)

● Guest controls CR3 (GVA->GPA), Host controls EPT (GPA->HPA)

● Propagate memslot / host PT changes to EPT

GPA
HPAGPA

HPAGPA
HVA

Guest PTs Memslots Host PTs EPT
9

MMU notifiers

Communication channel between MM subsystem and secondary MMUs (KVM)

Secondary MMUs program hardware to map physical memory

10

invalidate_range_start
invalidate_range_end

Free backing physical memory,
Must sync w/ PF handler

change_pte Host PTE changed

clear_young
clear_flush_young
test_young

Check if a page has been
accessed, optionally clear
accessed status / flush TLBS

mmu_notifier_invalidate_range

● Main MM must remap some memory

11

Root

L4

L3

L2

L1

Physical Memory

mmu_notifier_invalidate_range

● Main MM must remap some memory

● invalidate_range_start
○ Prevent access to a range of memory

12

Root

L4

L3

L2

L1

Physical Memory

mmu_notifier_invalidate_range

● Main MM must remap some memory

● invalidate_range_start
○ Prevent access to a range of memory

● Memory is remapped

13

Root

L4

L3

L2

L1

Physical Memory

mmu_notifier_invalidate_range

● Main MM must remap some memory

● invalidate_range_start
○ Prevent access to a range of memory

● Memory is remapped

● invalidate_range_end
○ Allow mapping the range

● Page faults must not run concurrently

w/ notifier

14

Root

L4

L3

L2

L1

Physical Memory

Parallel Page Fault Handling - Requirements

● Concurrently access + safely free page table memory

● Concurrent PTE modifications + track changes

● Interoperate with MMU notifiers

● Prevent vCPU access to remapped memory

● Prevent vCPU address translation through freed memory

15

Parallel Page Fault Handling - Requirements

● Concurrently access + safely free page table memory

● Concurrent PTE modifications + track changes

● Interoperate with MMU notifiers

● Prevent vCPU access to remapped memory

● Prevent vCPU address translation through freed memory

16

Walking paging structures

● direct_walk_iterator

● Preorder traversal of paging structure

● Common pattern for MMU operations
○ Setup traversal range

○ Modify PTEs

○ Cleanup, sync caches

● Transparently handles synchronization

17

Why use direct_walk_iterator

● TDP direct -> one paging structure

● Direct paging structure traversal parallelizes well

● No reverse map
○ Only allocated for nested virtualization

○ ~8 bytes / 4k guest memory

● No struct kvm_mmu_page
○ direct_walk_iterator tracks metadata
○ ~170 bytes / page of PTEs

● 0.2% of guest memory saved = 24GiB for 12T VM

18

Freeing and Accessing Page Table Memory

● Must prevent KVM access to freed memory

● direct_walk_iterator holds RCU read lock

● Free page table memory after:
○ Disconnect

○ RCU grace period / callback

● direct_walk_iterator transparently handles:
○ Acquiring RCU lock, RCU derefences

○ Restarting traversal after yielding

19

Parallel Page Fault Handling - Requirements

● Concurrently access + safely free page table memory

● Concurrent PTE modifications + track changes

● Interoperate with MMU notifiers

● Prevent vCPU access to remapped memory

● Prevent vCPU address translation through freed memory

20

Atomic Operations

● Atomic cmpxchg for all PTE modifications

● On success:
○ Bookkeeping handled by direct_walk_iterator

○ Based on level, guest address, previous value, new value

● On failure:
○ Other thread makes progress

○ Transparent retry handled by direct_walk_iterator

21

Parallel Page Fault Handling - Requirements

● Concurrently access + safely free page table memory

● Concurrent PTE modifications + track changes

● Interoperate with MMU notifiers

● Prevent bad vCPU cache state

● Prevent vCPU address translation through freed memory

22

● Need parallel page faults

● Other operations need exclusive access

○ e.g. MMU notifiers

○ e.g. Interop w/ shadow paging for nested

● MMU spinlock -> MMU reader / writer lock

Interoperation - MMU lock

23

Page Faults

MMU notifiers,
other operations

Parallel Page Fault Handling - Requirements

● Concurrently access + safely free page table memory

● Concurrent PTE modifications + track changes

● Interoperate with MMU notifiers

● Prevent vCPU access to remapped memory

● Prevent vCPU address translation through freed memory

24

Translation Lookaside Buffer (TLB)

● Cache complete translation
○ e.g. GVA->HPA, HVA->HPA

● TLB Flush
○ kvm_flush_remote_tlbs

○ Clears TLBs

○ Synchronizes caches with

in-memory state

25

Root

L4

L3

L2

L1

Host Memory

25

TLB

0x123456789a_ _ _ _

Preventing improper guest access

● Problem
○ TLB flushes are slow

○ Frequent TLB flushes degrade guest TLB performance

● Solution
○ Flush TLBs after clearing PTEs

● Avoid flushing TLBs in page fault handler and other operations

26

27

28

Deferring TLB Flushes

● Increment TLBs dirty counter when changing PTEs
○ Handled by direct_walk_iterator

● Skip flush if guest sync not needed
○ E.g. page fault handler

● If sync needed, flush on PTEs or TLBs dirty
○ E.g. MMU notifiers

29

Parallel Page Fault Handling - Requirements

● Concurrently access + safely free page table memory

● Concurrent PTE modifications + track changes

● Interoperate with MMU notifiers

● Prevent vCPU access to remapped memory

● Prevent vCPU address translation through freed memory

30

Paging Structure Caches

● Cache partial walks
○ e.g. High 27 bits of GPA ->

EPT level 1 page

● vCPUs can access
disconnected PT memory

● TLB Flush
○ kvm_flush_remote_tlbs
○ Clears TLBs
○ Clears paging structure

caches
○ Synchronizes caches w/

in-memory state

31

Root

L4

L3

L2

L1

Host Memory

31

Paging Structure Cache

0x1234567_ _ _ _ _ _ _

32

Two prerequisites to free page table memory:

RCU grace period

TLB flush

33

TLB Flushes and Freeing Page Table Memory

34

Improvements

● Simplified access pattern
○ Reduced maintenance burden, harder to forget to free/flush/update

● Memory savings
○ Improves efficiency, reduces overheads

● Parallel page faults
○ Improves live migration performance, reduces guest jitter and soft lockups

● Reduced / deferred TLB flushes
○ Improves MMU performance and guest TLB performance

35

36

Integration

● These are a lot of changes to the way the MMU works
● The best way to integrate is an open question

● Replacement
○ Extend the iterator pattern for x86 and nested shadow paging
○ Replace the whole KVM MMU

● Modularization
○ Formalize the MMU interface
○ Split the TDP MMU and x86 shadow MMU

37

Gerrit

https://linux-review.googlesource.com/c/virt/kvm/kvm/+/1416

Viewing the RFC

KVM mailing list

 https://www.spinics.net/lists/kvm/msg196464.html

38

https://linux-review.googlesource.com/c/virt/kvm/kvm/+/1416
https://www.spinics.net/lists/kvm/msg196464.html

Parallel Page Fault Handling - Where are the costs now?
- 78.74% kvm_vcpu_ioctl
 - 78.74% kvm_arch_vcpu_ioctl_run
 - 78.72% vmx_handle_exit
 - handle_ept_violation
 - 78.72% kvm_mmu_page_fault
 - 78.72% tdp_page_fault
 - 64.44% try_async_pf
 - 64.44% __gfn_to_pfn_memslot
 - 49.76% get_user_pages_unlocked
 + 41.43% down_read
 - 8.32% __get_user_pages
 - 8.29% handle_mm_fault
 - 8.29% __handle_mm_fault
 - 8.29% handle_userfault
 + 8.27% schedule
 + 14.67% down_read
 - 14.25% mapping_level
 - 14.25% kvm_host_page_size
 + 14.24% down_read

- 13.53% userfaultfd_ioctl
 - 13.36% mcopy_atomic
 - 13.33% down_read
 - 13.32% call_rwsem_down_read_failed
 - 13.31% rwsem_down_read_failed
 - 13.31% _raw_spin_lock_irq
 queued_spin_lock_slowpath

TL;DR There's still contention, but less, in more places, and it's not in KVM anymore

39

Reducing TLB Flushes - Why are we clearing PTEs?

40

● Optimization: demand page at 4k, back memory w/ large pages

Root

L4

L3

L2

L1

Reducing TLB Flushes - Why are we clearing PTEs?

41

● Optimization: demand page at 4k, back memory w/ large pages

Root

L4

L3

L2

L1

Reducing TLB Flushes - Why are we clearing PTEs?

42

● Optimization: demand page at 4k, back memory w/ large pages

Root

L4

L3

L2

L1

Reducing TLB Flushes - Why are we clearing PTEs?

43

● Optimization: demand page at 4k, back memory w/ large pages

Root

L4

L3

L2

L1

