
Nesting & Testing
KVM Forum 2019

Vitaly Kuznetsov <vkuznets@redhat.com>

mailto:vkuznets@redhat.com

About myself

About

● Focusing (mostly) on Linux kernel
● My areas of interest include:

○ Linux as guest on Hyper-V and Azure
○ Hyper-V Enlightenments in KVM
○ Running nested KVM on Hyper-V
○ Running nested Hyper-V on KVM

History of x86 nesting in KVM

History of nesting

commit cd232ad02f00286c3f8c9df30948da17212ef905
Author: Nadav Har'El <nyh@il.ibm.com>
Date: Wed May 25 23:10:33 2011 +0300

 KVM: nVMX: Implement VMLAUNCH and VMRESUME

commit 3d6368ef580a4dff012960834bba4e28d3c1430c
Author: Alexander Graf <agraf@suse.de>
Date: Tue Nov 25 20:17:07 2008 +0100

 KVM: SVM: Add VMRUN handler

Nesting in production

History of nesting

● Google Cloud Platform
● Oracle Cloud
● Microsoft Azure (KVM on Hyper-V)
● OpenStack testing at Red Hat
● ...

How do we test the feature?

Testing

● By running dedicated nesting test suites:
○ VMX/SVM tests in kvm-unit-tests
○ Nested related tests in KVM selftests

● By running L1s and running hypervisor test suites there.
○ All tests in kvm-unit-tests
○ All tests in KVM selftests

● By running L1s+L2s and checking that everything works as expected

kvm-unit-tests

KVM testing

● git://git.kernel.org/pub/scm/virt/kvm/kvm-unit-tests.git
● Utilizes QEMU to run guests
● Pros:

○ We can use QEMU devices and features
○ SMP support
○ Mature codebase, rich library,...

● Cons:
○ We can’t do what QEMU’s not capable of (e.g. issue specially crafted or

not yet supported ioctl)

KVM selftests

KVM testing

● ‘tools/testing/selftests/kvm’ in linux.git
● Every test is a ‘KVM userspace of its own’
● Pros:

○ Everything is possible (any ioctl, any guest code, ...)
○ Same git repository with KVM, patches can go in simultaneously

● Cons:
○ Requires low-level implementation for everything
○ Single concurrently running vCPU at this moment
○ Relatively young, limited library

Dedicated
nesting
testsuites

Running kvm-unit-tests on Intel hardware

kvm-unit-tests

Running kvm-unit-tests on AMD hardware

kvm-unit-tests

VMX

kvm-unit-tests

● “Correctness”
○ EPT: all bits/all levels, access, misconfig/violation

■ 7788 assertions
○ INVVPID: validity, exceptions, no functional testing

■ 1562 assertions
○ VMX controls (vmlaunch success/failure):

■ Control MSRs: 329 assertions
■ I/O, MSR bitmaps: 817 assertions
■ APIC/vAPIC, Posted interrupts, vTPR, NMI/vNMI: 2856 assertions
■ PML: 317 assertions
■ EPT: 160 assertions
■ MSR-store/MSR-load: 380 assertions
■ Invalid event injection: 246 assertions

VMX

kvm-unit-tests

● “Correctness” (continued)
○ Host state area (vmlaunch success/failure)

■ 1006 assertions
○ Guest state area (vmlaunch success/failure)

■ 994 assertions
○ APIC tests (xAPIC/x2APIC, TPR shadow, all registers)

■ 9239 assertions
○ Shadow VMCS (all VMCS fields)

■ 142218 assertions

VMX

kvm-unit-tests

● “Functional”
○ ‘Basic’ VMX (launch/resume, capabilities MSRs, PAT/EFER control

fields): 55 assertions
○ CR shadowing: 12 assertions
○ Preemption timer: 5 assertions
○ I/O bitmap: 15 assertions
○ Instruction intercept: 38 assertions
○ EPT: 36 assertions
○ PML: 2 assertions
○ VM-Entry in MOVSS shadow: 5 assertions
○ INIT signal: 8 assertions
○ Store TSC: 2 assertions
○ Pending event: 2 assertions

VMX

kvm-unit-tests

● “Regression”
○ #NM reflection: 2 assertions
○ #DB tests: 35 assertions
○ CR load: 3 assertions
○ EOI-exit-bitmap IOAPIC scan: 1 assertion
○ IOAPIC & LAPIC passthrough: 8 assertions
○ HLT with interrupt in RVI: 5 assertions

SVM

kvm-unit-tests

● Basic VMRUN
● IOIO
● Intercepts

○ VMRUN
○ CR3
○ DR
○ MSRs
○ Selective CR0

● Next RIP (rdtsc)
● Mode switch
● ASID == 0
● Latency

SVM

kvm-unit-tests

● NPT
○ NX bit
○ USER bit
○ WRITABLE bit (PT walk/page access)
○ RESERVED bit (PT walk/page access)

KVM selftests

KVM selftests

● 16 tests total, 5 VMX-only tests, 0 SVM-only tests (no SVM library)
● VMX-only tests:

○ Enlightened VMCS
○ Close while nested
○ Dirty log
○ Set nested state
○ TSC adjust
○ SMM (with VMX enabled)

Running
KVM testsuites
in L1

Running KVM testsuites in L1

KVM testsuites in L1

● Pros:
○ Much richer L2s
○ Test code reuse (what was running in L1 now runs in L2)
○ Allow us to test 3 level nesting!

● Cons:
○ We don’t test corner cases as L1 is a ‘sane VM’
○ One extra step during development

● … Can be the only possible option (e.g. for KVM on Hyper-V) ...

Using nested testing as a tool

KVM testsuites in L1

● Tests usually run with a fixed set of CPU features tied to the host (like ‘-cpu
host’)
○ No options for KVM selftests

● Making sure things work on with different CPUs require testing on different
hosts

● We can emulate different CPUs with QEMU and run tests in L1!
○ This will test both L0’s KVM nesting capabilities and L1’s KVM acting

correctly on the specified ‘hardware’
○ QEMU recently added options for fine-grained VMX capabilities setting

(‘vmx-*’ features)

Typical development workflow:

KVM testsuites in L1

1. Write a patch for KVM/QEMU, write a test

2. Compile, install

3. Run kvm-unit-tests, selftests
○ This involves dedicated VMX/SVM testsuites

4. No regressions -> Submit!

Typical development workflow (improved):

KVM testsuites in L1

1. Write a patch for KVM/QEMU, write a test

2. Compile, install

3. Run kvm-unit-tests, selftests
○ This involves dedicated VMX/SVM testsuites

4. Deploy artifacts on the testing VM
○ If tests were altered deploy them too

5. Run kvm-unit-tests, selftests in the VM
○ May make sense to try different L1 configs (CPU features,

hugepages, …)

6. No regressions -> Submit!

Share host’s filesystem with L1 to avoid the hassle

KVM testsuites in L1

● I use virtme (https://github.com/amluto/virtme) as a QEMU wrapper

Example: run kvm-unit-tests with L1 backed by huge pages:

~/virtme/virtme-run --memory 4096 --installed-kernel --rwdir `pwd` --script-sh
"cd `pwd` && ./run_tests.sh" --qemu-opts -smp 4 -mem-path /dev/hugepages/

PASS apic-split (53 tests)
PASS ioapic-split (19 tests)
PASS apic (53 tests)
PASS ioapic (19 tests)
...

https://github.com/amluto/virtme

How can we embed something like this into standard
development workflow?

KVM testsuites in L1

● Promote usage of existing tools
○ Like “virtme is awesome! :-)”

● Pick a tool and add a dependency to kvm-unit-tests
○ ./run_tests.sh && ./run_tests_nested.sh

● Add a [QEMU] wrapper to kvm-unit-tests
● … do something else?
● … and what about selftests?

My personal
testing
wishlist

Would appreciate some love...

Wishlist

● SVM testing in kvm-unit-tests
○ NPT, VMCB controls, AVIC, ...

● SVM library for KVM selftests
● More event injections (both SVM and VMX)
● Enlightened VMCS support in kvm-unit-tests
● SMM with nesting tests (selftest, kvm-unit-tests?)
● Functional tests for translation buffers invalidation
● Hyper-V enlightenments tests (PV TLB flush, PV IPI, …)

Credits

kvm-unit-tests

Credits

 38 Nadav Amit
 30 Janosch Frank
 29 Krish Sadhukhan
 29 Sean Christopherson
 20 Paolo Bonzini
 9 Thomas Huth
 8 Liran Alon
 7 Marc Orr
 6 Alexandru Elisei
 6 Bill Wendling
 6 Vitaly Kuznetsov
 5 Jim Mattson
 4 Andrew Jones
 3 Tambe, William
 2 David Gibson

 2 David Hildenbrand
 2 Oliver Upton
 2 Stefan Raspl
 2 Suraj Jitindar Singh
 1 Andre Przywara
 1 Cathy Avery
 1 Christian Borntraeger
 1 Christoffer Dall
 1 Evgeny Yakovlev
 1 Haozhong Zhang
 1 Peter Xu
 1 Sergey Bronnikov
 1 Wanpeng Li

$ git log --no-merges --since 2018-10-27 --pretty=short | git shortlog -s -n

KVM selftests

Credits

 16 Paolo Bonzini
 16 Thomas Huth
 15 Vitaly Kuznetsov
 14 Andrew Jones
 5 Aaron Lewis
 5 Peter Xu
 4 Sean Christopherson
 2 Liran Alon
 2 Shuah Khan
 2 Thomas Gleixner
 1 Ben Gardon
 1 Christian Borntraeger
 1 Dan Carpenter
 1 Naresh Kamboju

$ git log --no-merges --since 2018-10-27 --pretty=short tools/testing/selftests/kvm/ | git shortlog -s -n

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you!

